Python数据可视化库—Bokeh与Altair指南【第161篇—数据可视化】

2024-04-16 14:04

本文主要是介绍Python数据可视化库—Bokeh与Altair指南【第161篇—数据可视化】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

👽发现宝藏

前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。【点击进入巨牛的人工智能学习网站】。

在数据科学和数据分析领域,数据可视化是一种强大的工具,可以帮助我们更好地理解数据、发现模式和趋势。Python作为一种流行的数据科学工具,拥有多种数据可视化库。本文将重点比较Bokeh和Altair这两个常用的Python数据可视化库,探讨它们的优缺点以及在不同场景下的适用性。

Bokeh 简介

Bokeh是一个交互式可视化库,它能够创建各种类型的交互式图表,包括散点图、线图、条形图等。Bokeh提供了丰富的工具,使用户能够在图表中进行缩放、平移和选择等操作。

Altair 简介

Altair是一个基于Vega和Vega-Lite的声明式统计可视化库。它的设计理念是简单性和一致性,使用者只需通过简单的Python语法即可创建复杂的可视化图表,而无需深入了解底层的绘图细节。

Bokeh 与 Altair 的比较

  1. 易用性

    • Bokeh:相对而言,Bokeh的学习曲线较为陡峭,需要一定的时间来掌握其强大的交互功能和绘图选项。
    • Altair:Altair的语法相对简单直观,使用者可以更快速地创建出漂亮的图表,对于新手来说更易上手。
  2. 交互性

    • Bokeh:Bokeh提供了丰富的交互工具,可以轻松地创建交互式图表,并且支持自定义交互行为。
    • Altair:虽然Altair的交互功能相对较少,但是它可以无缝地与其他交互库(如Panel)集成,实现更复杂的交互需求。
  3. 可视化表达能力

    • Bokeh:Bokeh可以创建各种类型的图表,并且支持自定义图表的外观和布局。
    • Altair:Altair的语法设计简洁而灵活,可以轻松地实现复杂的可视化表达,例如使用facet进行分面绘图、使用layer进行图层叠加等。

示例代码和解析

Bokeh 示例:
from bokeh.plotting import figure, show
from bokeh.sampledata.iris import flowers# 创建一个散点图
p = figure(title="Iris Dataset", x_axis_label='Petal Length', y_axis_label='Petal Width')# 添加散点数据
p.circle(flowers['petal_length'], flowers['petal_width'], legend_label='Iris Flowers', color='blue', size=8)# 显示图表
show(p)

解析:

  • 使用Bokeh创建一个散点图,x轴为花瓣长度,y轴为花瓣宽度。
  • 使用Bokeh的circle方法添加散点数据,并指定图例标签、颜色和大小。
  • 最后调用show函数显示图表。
Altair 示例:
import altair as alt
from vega_datasets import data# 加载数据集
iris = data.iris()# 创建散点图
scatter = alt.Chart(iris).mark_circle().encode(x='petalLength:Q',y='petalWidth:Q',color='species:N',tooltip=['species', 'petalLength', 'petalWidth']
).properties(title='Iris Dataset',width=400,height=300
).interactive()# 显示图表
scatter

解析:

  • 使用Altair创建一个散点图,x轴为花瓣长度,y轴为花瓣宽度,颜色根据鸢尾花的种类进行编码。
  • 使用Altair的mark_circle方法创建散点图,并指定x、y、color等属性。
  • 最后通过.properties方法设置图表标题、宽度和高度,并调用.interactive()方法使图表具有交互功能。

通过以上示例和比较,我们可以看出,Bokeh和Altair都是功能强大的Python可视化库,它们各有优劣,选择合适的库取决于具体的需求和个人偏好。Bokeh适用于需要复杂交互的场景,而Altair则更适合于快速创建漂亮的可视化图表。

案例与代码示例

1. Bokeh 案例:

假设我们有一组销售数据,包括产品名称、销售量和销售额,我们想要使用 Bokeh 创建一个交互式条形图来展示各产品的销售情况。

from bokeh.plotting import figure, output_file, show
from bokeh.models import ColumnDataSource, HoverTool
from bokeh.transform import factor_cmap
import pandas as pd# 创建示例销售数据
sales_data = {'Product': ['Product A', 'Product B', 'Product C', 'Product D'],'Sales Volume': [100, 150, 200, 120],'Revenue': [5000, 7500, 10000, 6000]
}df = pd.DataFrame(sales_data)# 设置输出文件
output_file("sales_bar_chart.html")# 创建ColumnDataSource
source = ColumnDataSource(df)# 创建绘图对象
p = figure(x_range=df['Product'], plot_height=350, title="Sales Summary",toolbar_location=None, tools="")# 添加条形图
p.vbar(x='Product', top='Sales Volume', width=0.9, source=source,line_color='white', fill_color=factor_cmap('Product', palette='Set1', factors=df['Product']))# 添加悬停工具
p.add_tools(HoverTool(tooltips=[("Product", "@Product"), ("Sales Volume", "@{Sales Volume}"), ("Revenue", "@Revenue")]))# 设置图表属性
p.xgrid.grid_line_color = None
p.y_range.start = 0
p.yaxis.axis_label = "Sales Volume"# 显示图表
show(p)

这段代码是用于创建一个简单的条形图来展示销售数据,并使用 Bokeh 库进行可视化。以下是代码的主要步骤解析:

  1. 导入必要的库:

    • from bokeh.plotting import figure, output_file, show: 从 Bokeh 库中导入创建绘图、输出文件和显示图表的函数。
    • from bokeh.models import ColumnDataSource, HoverTool: 从 Bokeh 库中导入用于处理数据源和悬停工具的相关类。
    • from bokeh.transform import factor_cmap: 从 Bokeh 库中导入用于颜色映射的转换函数。
    • import pandas as pd: 导入 Pandas 库,用于处理数据。
  2. 创建示例销售数据:

    • 使用字典形式创建了示例的销售数据,包括产品名称、销售量和收入。
  3. 将数据转换为 Pandas DataFrame:

    • 使用 pd.DataFrame() 函数将销售数据转换为 DataFrame。
  4. 设置输出文件:

    • 使用 output_file() 函数设置输出文件名为 “sales_bar_chart.html”。
  5. 创建 ColumnDataSource:

    • 使用 ColumnDataSource 类将 DataFrame 转换为 Bokeh 可用的数据源。
  6. 创建绘图对象:

    • 使用 figure() 函数创建一个条形图对象 p,指定了 x 轴的范围、绘图高度、标题等属性。
  7. 添加条形图:

    • 使用 vbar() 方法向绘图对象添加条形图,指定了 x 值(产品名称)、条形的高度(销售量)、线条颜色、填充颜色等属性。
  8. 添加悬停工具:

    • 使用 add_tools() 方法向绘图对象添加悬停工具,指定了悬停时显示的信息,包括产品名称、销售量和收入。
  9. 设置图表属性:

    • 使用一系列属性设置函数设置图表的外观属性,如去除 x 轴的网格线、设置 y 轴起始值、设置 y 轴标签等。
  10. 显示图表:

    • 使用 show() 函数显示绘图对象。

通过这些步骤,代码创建了一个包含销售数据的条形图,并通过悬停工具提供了额外的交互信息。

image-20240314225214455

2. Altair 案例:

假设我们有一组学生的成绩数据,包括学生姓名、数学成绩和英语成绩,我们想要使用 Altair 创建一个散点图来展示学生的数学成绩与英语成绩的关系。

import altair as alt
import pandas as pd# 创建示例成绩数据
score_data = {'Student': ['Alice', 'Bob', 'Charlie', 'David', 'Emma'],'Math Score': [85, 90, 75, 80, 95],'English Score': [75, 85, 80, 70, 90]
}df = pd.DataFrame(score_data)# 创建散点图
scatter_plot = alt.Chart(df).mark_point().encode(x='Math Score',y='English Score',tooltip=['Student', 'Math Score', 'English Score']
).properties(title='Math vs English Scores',width=400,height=300
).interactive()# 显示图表
scatter_plot

这些示例代码展示了如何使用 Bokeh 和 Altair 分别创建交互式条形图和散点图,以展示销售数据和成绩数据的可视化。通过这些示例,可以更好地理解 Bokeh 和 Altair 在实际应用中的使用方法和效果。

3. Bokeh 案例(交互式地图):

假设我们有一组城市的经纬度数据,以及每个城市的人口数量,我们希望使用 Bokeh 创建一个交互式地图,显示每个城市的位置并以圆的大小表示人口数量。

from bokeh.plotting import figure, output_file, show
from bokeh.models import ColumnDataSource, HoverTool# 示例城市数据
cities_data = {'City': ['New York', 'Los Angeles', 'Chicago', 'Houston'],'Latitude': [40.7128, 34.0522, 41.8781, 29.7604],'Longitude': [-74.0060, -118.2437, -87.6298, -95.3698],'Population': [8399000, 3990456, 2705994, 2320268]
}df = pd.DataFrame(cities_data)# 设置输出文件
output_file("population_map.html")# 创建ColumnDataSource
source = ColumnDataSource(df)# 创建绘图对象
p = figure(plot_width=800, plot_height=600, title="Population Map",toolbar_location="below")# 添加圆形标记
p.circle(x='Longitude', y='Latitude', size='Population' / 100000,fill_alpha=0.6, line_color=None, source=source)# 添加悬停工具
hover = HoverTool()
hover.tooltips = [("City", "@City"), ("Population", "@Population")]
p.add_tools(hover)# 设置图表属性
p.xaxis.axis_label = "Longitude"
p.yaxis.axis_label = "Latitude"# 显示图表
show(p)
4. Altair 案例(堆叠柱状图):

假设我们有一组月度销售数据,包括销售额和利润,我们希望使用 Altair 创建一个堆叠柱状图,展示每个月的销售额和利润情况。

import altair as alt
import pandas as pd# 示例销售数据
sales_data = {'Month': ['Jan', 'Feb', 'Mar', 'Apr', 'May'],'Sales': [50000, 60000, 70000, 55000, 65000],'Profit': [20000, 25000, 30000, 22000, 27000]
}df = pd.DataFrame(sales_data)# 创建堆叠柱状图
stacked_bar_chart = alt.Chart(df).mark_bar().encode(x='Month',y='Sales',color=alt.value('blue'),tooltip=['Month', 'Sales']
).properties(title='Monthly Sales and Profit',width=400,height=300
).interactive() + \
alt.Chart(df).mark_bar().encode(x='Month',y='Profit',color=alt.value('orange'),tooltip=['Month', 'Profit']
)# 显示图表
stacked_bar_chart

这些示例代码展示了如何使用 Bokeh 和 Altair 分别创建交互式地图和堆叠柱状图,以展示城市人口分布和销售数据的可视化。这些示例为使用 Bokeh 和 Altair 进行数据可视化提供了更多的灵感和实践经验。

image-20240314225239184

总结

本文对Python中两个常用的数据可视化库 Bokeh 和 Altair 进行了比较和探讨。通过对它们的特点、优缺点以及使用示例的详细分析,读者可以更好地了解这两个库的功能和适用场景,从而更好地选择合适的库来进行数据可视化工作。

在比较中,我们发现:

  • Bokeh 提供了丰富的交互功能和自定义选项,适用于需要复杂交互和自定义图表外观的场景,但学习曲线较陡。
  • Altair 的语法简洁直观,易于上手,适用于快速创建漂亮的可视化图表,但交互功能相对较少。

针对不同的需求和技能水平,读者可以灵活选择使用 Bokeh 或 Altair 进行数据可视化。Bokeh 适用于需要复杂交互和自定义外观的场景,而 Altair 则更适合快速创建漂亮的可视化图表。

通过本文的介绍和示例代码,读者可以进一步掌握 Bokeh 和 Altair 的使用方法,并在实践中运用它们来进行数据可视化工作。同时,我们也展望了数据可视化领域未来的发展趋势,包括增强交互性、提升性能和效率、整合机器学习和深度学习等方面。

总之,数据可视化作为数据科学和数据分析领域的重要工具,将在未来继续发挥重要作用。Bokeh 和 Altair 等可视化库的不断发展和完善,将为用户提供更加强大和便捷的数据可视化工具,助力数据分析和决策支持工作的开展。

这篇关于Python数据可视化库—Bokeh与Altair指南【第161篇—数据可视化】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/908995

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

破茧 JDBC:MyBatis 在 Spring Boot 中的轻量实践指南

《破茧JDBC:MyBatis在SpringBoot中的轻量实践指南》MyBatis是持久层框架,简化JDBC开发,通过接口+XML/注解实现数据访问,动态代理生成实现类,支持增删改查及参数... 目录一、什么是 MyBATis二、 MyBatis 入门2.1、创建项目2.2、配置数据库连接字符串2.3、入

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

Apache Ignite 与 Spring Boot 集成详细指南

《ApacheIgnite与SpringBoot集成详细指南》ApacheIgnite官方指南详解如何通过SpringBootStarter扩展实现自动配置,支持厚/轻客户端模式,简化Ign... 目录 一、背景:为什么需要这个集成? 二、两种集成方式(对应两种客户端模型) 三、方式一:自动配置 Thick

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3