Python数学建模学习-PageRank算法

2024-04-15 17:12

本文主要是介绍Python数学建模学习-PageRank算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1-基本概念

PageRank算法是由Google创始人Larry Page在斯坦福大学时提出,又称PR,佩奇排名。主要针对网页进行排名,计算网站的重要性,优化搜索引擎的搜索结果。PR值是表示其重要性的因子。

中心思想:

  • 数量假设:在网页模型图中,一个网页接受到的其他网页指向的入链(In-Links)越多,说明该网页越重要。

  •  质量假设:当一个质量高的网页指向(Out-Links)一个网页,说明这个被指的网页重要。

  •  入链出链模型图1:

  •  入链出链模型图2:[把每个网页当成一个节点]

2-算法和公式 

PageRank公式

  •  PR(Ti)代表的是其他节点的(指向A节点)PR值
  • L(Ti)代表的是其他节点的(指向A节点)出链数
  • i 代表的是循环次数

i=0时, 

i=1时,PR(A)为:

 i=1时,PR(B)为:

i=1时,PR(C)为: 

i=1时,PR(D)为: 

 主要找到入链数和出链数

可以求得:

矩阵化表达:使用转移概率矩阵/马尔可夫矩阵

 将左图内容转换为右图矩阵:

从图可以看出:

从A将跳转到B或C的概率为1/2

从B将跳转到C的概率为1

从C将跳转到A或D的概率为1/2

从D将跳转到A的概率为1

通过矩阵表达快速计算PR值

公式:PR\left ( a\right )=M*V

其中M 表示转移概率矩阵/马尔可夫矩阵

 其中V 表示上一次得到的PR值

根据公式可得第一次迭代得到的PR值:

0*1/4+0*1/4+1/2*1/4+1*1/4=3/8

1/2*1/4+ 0*1/4+0*1/4+0*1/4=1/8

1/2*1/4+ 1*1/4+0*1/4+0*1/4=3/8

0*1/4+0*1/4+1/2*1/4+0*1/4=1/8

通过第一次迭代得到的PR值,我们可以得到第二次迭代的PR值:

此时的排名为:

AC;BD

再结合最开始的公式看:

 同理可求出其他PR值。

3-Dead Ends 问题

 使用转移概率矩阵快速计算PR值:

 解决方法:Teleport

 4-Dead Ends 问题修正公式

 5-Spider Traps问题

 

6- Spider Traps问题解决方案:Random Teleport

  • 步骤1:将节点图,转换成列转移概率矩阵
  • 步骤2:修正M

1转换成列转移概率矩阵

2 修正M

\beta 通常设置为0.85

第一次迭代的PR值为:

 7-Spider Traps问题修正公式 

 8-代码案例练习[使用Jupyter Notebook编程]

import networkx as nx
import matplotlib.pyplot as plt 
import random
Graph = nx.DiGraph()
Graph.add_nodes_from(range(0,100))
for i in range(100):j =random.randint(0,100)k =random.randint(0,100)Graph.add_edge(k,j)
nx.draw(Graph,with_labels=True)
plt.show()

pr = nx.pagerank(Graph,max_iter=100,alpha =0.01)
print(pr)

输出结果: 

{0: 0.009843202124104186, 1: 0.009843202124104186, 2: 0.009941633650425134, 3: 0.009974526667449609, 4: 0.009892665412017136, 5: 0.009843202124104186, 6: 0.009843202124104186, 7: 0.009843202124104186, 8: 0.009892665412017136, 9: 0.00997535174995786, 10: 0.009843202124104186, 11: 0.00989258290376631, 12: 0.009941633650425134, 13: 0.00989241788726466, 14: 0.009941633650425134, 15: 0.010024237480115035, 16: 0.009843202124104186, 17: 0.010041880358264236, 18: 0.009941963683428435, 19: 0.009843202124104186, 20: 0.00989291293676961, 21: 0.009843202124104186, 22: 0.009867810005684423, 23: 0.00989241788726466, 24: 0.009843202124104186, 25: 0.009975475512334098, 26: 0.00989258290376631, 27: 0.009941633650425134, 28: 0.00989291293676961, 29: 0.009868057530436899, 30: 0.010041385308759285, 31: 0.009843202124104186, 32: 0.009982839305644121, 33: 0.009843202124104186, 34: 0.009843202124104186, 35: 0.010041220292257635, 36: 0.00994188117517761, 37: 0.009876342665881136, 38: 0.00989258290376631, 39: 0.00987642517413196, 40: 0.009942004937553848, 41: 0.009843202124104186, 42: 0.00989241788726466, 43: 0.009909263185655886, 44: 0.009991096938338084, 45: 0.009892665412017136, 46: 0.009992293307975048, 47: 0.009942128699930086, 48: 0.009942128699930086, 49: 0.009843202124104186, 50: 0.00989241788726466, 51: 0.009868057530436899, 52: 0.009843202124104186, 53: 0.009867810005684423, 54: 0.009843202124104186, 55: 0.009843202124104186, 56: 0.009876342665881136, 57: 0.009941633650425134, 58: 0.009941963683428435, 59: 0.009843202124104186, 60: 0.009843202124104186, 61: 0.009843202124104186, 62: 0.009843202124104186, 63: 0.009843202124104186, 64: 0.009974774192202085, 65: 0.00989291293676961, 66: 0.009843202124104186, 67: 0.009942623749435036, 68: 0.00989241788726466, 69: 0.009843202124104186, 70: 0.009892665412017136, 71: 0.009843202124104186, 72: 0.009843202124104186, 73: 0.00999200452909716, 74: 0.009876672698884436, 75: 0.009876122643878936, 76: 0.009867810005684423, 77: 0.009941633650425134, 78: 0.009941633650425134, 79: 0.010041674087637172, 80: 0.009941633650425134, 81: 0.009843202124104186, 82: 0.009876342665881136, 83: 0.009991591987843034, 84: 0.009942128699930086, 85: 0.00987642517413196, 86: 0.00997551676645951, 87: 0.009843202124104186, 88: 0.009876672698884436, 89: 0.00987609514112866, 90: 0.009893407986274562, 91: 0.00989258290376631, 92: 0.009966489056757847, 93: 0.009876672698884436, 94: 0.00987609514112866, 95: 0.009843202124104186, 96: 0.00994188117517761, 97: 0.009942293716431735, 98: 0.00999200452909716, 99: 0.009843202124104186, 100: 0.009868057530436899}
max(pr.values())

 输出结果:

0.010041880358264236
import operator
max(pr.items(),key=operator.itemgetter(1))[0]

输出结果:

17
sum(pr.values())

输出结果:

0.9999999999999996
min(pr.values())

输出结果:

0.009843202124104186

9-PageRank的优缺点

优点:

  • 通过网页之间的链接来决定网页重要性,一定程度消除了认为对排名结果的影响

  •  离线计算PageRank值,而非查找的时候计算,提升了查询的效率

缺点 :

  • 存在时间久的网站,PageRank值会越来越大,而新生的网站,PageRank值增长慢

  •  非查询相关的特性,查询结果会偏离搜索的内容
  • 通过“僵尸”网站或链接,人为刷PageRank值

参考:

1.Up主帅器学习/林木的视频。 

 

这篇关于Python数学建模学习-PageRank算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/906415

相关文章

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

利用Python打造一个Excel记账模板

《利用Python打造一个Excel记账模板》这篇文章主要为大家详细介绍了如何使用Python打造一个超实用的Excel记账模板,可以帮助大家高效管理财务,迈向财富自由之路,感兴趣的小伙伴快跟随小编一... 目录设置预算百分比超支标红预警记账模板功能介绍基础记账预算管理可视化分析摸鱼时间理财法碎片时间利用财

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

使用Python和Pyecharts创建交互式地图

《使用Python和Pyecharts创建交互式地图》在数据可视化领域,创建交互式地图是一种强大的方式,可以使受众能够以引人入胜且信息丰富的方式探索地理数据,下面我们看看如何使用Python和Pyec... 目录简介Pyecharts 简介创建上海地图代码说明运行结果总结简介在数据可视化领域,创建交互式地