Python数学建模学习-PageRank算法

2024-04-15 17:12

本文主要是介绍Python数学建模学习-PageRank算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1-基本概念

PageRank算法是由Google创始人Larry Page在斯坦福大学时提出,又称PR,佩奇排名。主要针对网页进行排名,计算网站的重要性,优化搜索引擎的搜索结果。PR值是表示其重要性的因子。

中心思想:

  • 数量假设:在网页模型图中,一个网页接受到的其他网页指向的入链(In-Links)越多,说明该网页越重要。

  •  质量假设:当一个质量高的网页指向(Out-Links)一个网页,说明这个被指的网页重要。

  •  入链出链模型图1:

  •  入链出链模型图2:[把每个网页当成一个节点]

2-算法和公式 

PageRank公式

  •  PR(Ti)代表的是其他节点的(指向A节点)PR值
  • L(Ti)代表的是其他节点的(指向A节点)出链数
  • i 代表的是循环次数

i=0时, 

i=1时,PR(A)为:

 i=1时,PR(B)为:

i=1时,PR(C)为: 

i=1时,PR(D)为: 

 主要找到入链数和出链数

可以求得:

矩阵化表达:使用转移概率矩阵/马尔可夫矩阵

 将左图内容转换为右图矩阵:

从图可以看出:

从A将跳转到B或C的概率为1/2

从B将跳转到C的概率为1

从C将跳转到A或D的概率为1/2

从D将跳转到A的概率为1

通过矩阵表达快速计算PR值

公式:PR\left ( a\right )=M*V

其中M 表示转移概率矩阵/马尔可夫矩阵

 其中V 表示上一次得到的PR值

根据公式可得第一次迭代得到的PR值:

0*1/4+0*1/4+1/2*1/4+1*1/4=3/8

1/2*1/4+ 0*1/4+0*1/4+0*1/4=1/8

1/2*1/4+ 1*1/4+0*1/4+0*1/4=3/8

0*1/4+0*1/4+1/2*1/4+0*1/4=1/8

通过第一次迭代得到的PR值,我们可以得到第二次迭代的PR值:

此时的排名为:

AC;BD

再结合最开始的公式看:

 同理可求出其他PR值。

3-Dead Ends 问题

 使用转移概率矩阵快速计算PR值:

 解决方法:Teleport

 4-Dead Ends 问题修正公式

 5-Spider Traps问题

 

6- Spider Traps问题解决方案:Random Teleport

  • 步骤1:将节点图,转换成列转移概率矩阵
  • 步骤2:修正M

1转换成列转移概率矩阵

2 修正M

\beta 通常设置为0.85

第一次迭代的PR值为:

 7-Spider Traps问题修正公式 

 8-代码案例练习[使用Jupyter Notebook编程]

import networkx as nx
import matplotlib.pyplot as plt 
import random
Graph = nx.DiGraph()
Graph.add_nodes_from(range(0,100))
for i in range(100):j =random.randint(0,100)k =random.randint(0,100)Graph.add_edge(k,j)
nx.draw(Graph,with_labels=True)
plt.show()

pr = nx.pagerank(Graph,max_iter=100,alpha =0.01)
print(pr)

输出结果: 

{0: 0.009843202124104186, 1: 0.009843202124104186, 2: 0.009941633650425134, 3: 0.009974526667449609, 4: 0.009892665412017136, 5: 0.009843202124104186, 6: 0.009843202124104186, 7: 0.009843202124104186, 8: 0.009892665412017136, 9: 0.00997535174995786, 10: 0.009843202124104186, 11: 0.00989258290376631, 12: 0.009941633650425134, 13: 0.00989241788726466, 14: 0.009941633650425134, 15: 0.010024237480115035, 16: 0.009843202124104186, 17: 0.010041880358264236, 18: 0.009941963683428435, 19: 0.009843202124104186, 20: 0.00989291293676961, 21: 0.009843202124104186, 22: 0.009867810005684423, 23: 0.00989241788726466, 24: 0.009843202124104186, 25: 0.009975475512334098, 26: 0.00989258290376631, 27: 0.009941633650425134, 28: 0.00989291293676961, 29: 0.009868057530436899, 30: 0.010041385308759285, 31: 0.009843202124104186, 32: 0.009982839305644121, 33: 0.009843202124104186, 34: 0.009843202124104186, 35: 0.010041220292257635, 36: 0.00994188117517761, 37: 0.009876342665881136, 38: 0.00989258290376631, 39: 0.00987642517413196, 40: 0.009942004937553848, 41: 0.009843202124104186, 42: 0.00989241788726466, 43: 0.009909263185655886, 44: 0.009991096938338084, 45: 0.009892665412017136, 46: 0.009992293307975048, 47: 0.009942128699930086, 48: 0.009942128699930086, 49: 0.009843202124104186, 50: 0.00989241788726466, 51: 0.009868057530436899, 52: 0.009843202124104186, 53: 0.009867810005684423, 54: 0.009843202124104186, 55: 0.009843202124104186, 56: 0.009876342665881136, 57: 0.009941633650425134, 58: 0.009941963683428435, 59: 0.009843202124104186, 60: 0.009843202124104186, 61: 0.009843202124104186, 62: 0.009843202124104186, 63: 0.009843202124104186, 64: 0.009974774192202085, 65: 0.00989291293676961, 66: 0.009843202124104186, 67: 0.009942623749435036, 68: 0.00989241788726466, 69: 0.009843202124104186, 70: 0.009892665412017136, 71: 0.009843202124104186, 72: 0.009843202124104186, 73: 0.00999200452909716, 74: 0.009876672698884436, 75: 0.009876122643878936, 76: 0.009867810005684423, 77: 0.009941633650425134, 78: 0.009941633650425134, 79: 0.010041674087637172, 80: 0.009941633650425134, 81: 0.009843202124104186, 82: 0.009876342665881136, 83: 0.009991591987843034, 84: 0.009942128699930086, 85: 0.00987642517413196, 86: 0.00997551676645951, 87: 0.009843202124104186, 88: 0.009876672698884436, 89: 0.00987609514112866, 90: 0.009893407986274562, 91: 0.00989258290376631, 92: 0.009966489056757847, 93: 0.009876672698884436, 94: 0.00987609514112866, 95: 0.009843202124104186, 96: 0.00994188117517761, 97: 0.009942293716431735, 98: 0.00999200452909716, 99: 0.009843202124104186, 100: 0.009868057530436899}
max(pr.values())

 输出结果:

0.010041880358264236
import operator
max(pr.items(),key=operator.itemgetter(1))[0]

输出结果:

17
sum(pr.values())

输出结果:

0.9999999999999996
min(pr.values())

输出结果:

0.009843202124104186

9-PageRank的优缺点

优点:

  • 通过网页之间的链接来决定网页重要性,一定程度消除了认为对排名结果的影响

  •  离线计算PageRank值,而非查找的时候计算,提升了查询的效率

缺点 :

  • 存在时间久的网站,PageRank值会越来越大,而新生的网站,PageRank值增长慢

  •  非查询相关的特性,查询结果会偏离搜索的内容
  • 通过“僵尸”网站或链接,人为刷PageRank值

参考:

1.Up主帅器学习/林木的视频。 

 

这篇关于Python数学建模学习-PageRank算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/906415

相关文章

python生成随机唯一id的几种实现方法

《python生成随机唯一id的几种实现方法》在Python中生成随机唯一ID有多种方法,根据不同的需求场景可以选择最适合的方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习... 目录方法 1:使用 UUID 模块(推荐)方法 2:使用 Secrets 模块(安全敏感场景)方法

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核