基于R语言实现的beta二项回归模型【理解与实现】

2024-04-15 07:36

本文主要是介绍基于R语言实现的beta二项回归模型【理解与实现】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本实验,创建一组使用二项分布模拟的数据(不带额外的随机性),和另一组使用Beta二项分布模拟的数据(引入了随机成功概率 p,从而增加了数据的离散性。

现在假设我们站在上帝视角,有两组不知道分布的数据。

一、如何理解:“观察到的方差大于二项分布预期的方差”

1.生成二项分布数据(不带额外的随机性)

set.seed(123)  # 确保结果可重现
n <- 100  # 样本大小
p_fixed <- 0.5  # 固定的成功概率
trials <- 100  # 每次试验的总次数# 生成数据
binomial_data <- rbinom(n, trials, p_fixed)

2. 生成Beta二项分布数据(引入随机性的成功概率)

# Beta分布参数
alpha <- 2
beta <- 5# 生成成功概率
p_random <- rbeta(n, alpha, beta)# 使用Beta生成的成功概率生成数据
beta_binomial_data <- rbinom(n, trials, p_random)

3. 计算并比较两组数据的方差

# 计算实际方差
var_binomial <- var(binomial_data)
var_beta_binomial <- var(beta_binomial_data)# 计算二项分布预期的方差
expected_var_binomial <- trials * p_fixed * (1 - p_fixed)# 打印结果
print(paste("方差 - 二项分布数据:", var_binomial))
print(paste("方差 - Beta二项分布数据:", var_beta_binomial))
print(paste("预期方差 - 标准二项分布:", expected_var_binomial))

你会发现Beta二项分布数据的方差通常会大于二项分布数据的方差,因为Beta二项分布引入的成功概率的随机性增加了数据的离散性。同时,你也会发现这个方差大于标准二项分布预期的方差,这正是我们需要使用Beta二项模型的原因。

4.可视化

# 加载必要的库
library(ggplot2)# 创建数据框
df <- data.frame(Data_Type = c(rep("Binomial", length(binomial_data)), rep("Beta-Binomial", length(beta_binomial_data))),Count = c(binomial_data, beta_binomial_data)
)# 绘制直方图
ggplot(df, aes(x = Count, fill = Data_Type)) +geom_histogram(position = "identity", alpha = 0.7, bins = 20) +labs(title = "Histogram of Binomial vs Beta-Binomial Data",x = "Count", y = "Frequency") +theme_minimal()

在这里插入图片描述
从直方图可以看出,Beta-Binomial 数据的分布更加广泛,呈现出更大的离散性,相比之下,Binomial 数据更加集中。这符合我们的预期,因为Beta-Binomial 数据引入了成功概率的随机性,增加了数据的变异性。

二、使用Beta二项分布模型主要涉及数据的拟合与分析过程

解释 VAGM

1.完整代码

# 加载必要的库
if (!require("VGAM")) install.packages("VGAM", dependencies = TRUE)
library(VGAM)# 生成模拟数据
set.seed(123)  # 设置随机数种子以确保结果可重现
n <- 100  # 样本大小
alpha <- 2  # Beta分布参数α
beta <- 5   # Beta分布参数β
trials <- sample(10:100, n, replace = TRUE)  # 每个观察的试验次数
p <- rbeta(n, alpha, beta)  # 从Beta分布生成成功概率
success <- rbinom(n, trials, p)  # 生成成功次数data <- data.frame(success = success, trials = trials, predictor1 = rnorm(n), predictor2 = runif(n))# 拟合Beta二项回归模型
model <- vglm(cbind(success, trials - success) ~ predictor1 + predictor2, family = betabinomial(link = "logit"), data = data)# 查看模型摘要
summary(model)# 模型诊断
par(mfrow = c(2, 2))
plot(model)# 模型预测
new_data <- data.frame(predictor1 = c(0, 1), predictor2 = c(0.5, 0.5))
predictions <- predict(model, newdata = new_data, type = "response")
print(predictions)

导出结果解释

1.数据的形式

在这里插入图片描述
响应变量:成功次数和失败次数(Trials-success),
预测变量:predictor1 & predictor2

2.model 拟合结果

在这里插入图片描述
注意:
当我们拟合Beta二项分布时,模型实际上是在估计两个参数:成功概率p 的平均值和分布的离散程度。由于Beta分布是由两个参数控制的,这两个参数通常用不同的链接函数进行转换。
在这种情况下,每个链接函数可能有自己的截距,因此输出中显示了两个截距。

(Intercept):1 — 通常代表与成功概率 p 相关的截距项。
(Intercept):2 — 代表与Beta分布的离散参数相关的截距项。
忽略 参数的显著性

3.模型诊断

在这里插入图片描述
模型诊断图是统计建模中的一个重要组成部分,它们可以帮助我们识别模型中的问题,比如不符合假设的数据、异常值或模型拟合不良。
总体上:

从这些诊断图来看,模型似乎没有表现出明显的拟合问题。残差分布比较均匀,没有明显的模式,也没有迹象显示数据点有不适当的杠杆效应。
具体地:

  • Pearson残差 vs. 线性预测器1:
    这个图显示了每个观测值的Pearson残差与第一个预测变量的线性预测值的关系。理想情况下,这些点应该随机分布,没有明显的模式。从图中看,残差似乎随着预测值的增加而稍微减小,但没有明显的趋势,。然而,这里没有强烈的模式或明显的异常值。

  • Pearson残差 vs. Jittered线性预测器2:
    “Jittered”意味着在横轴的值上添加了一点随机噪声,以避免重叠点。这个图表应该类似于第一个图表,展示残差和第二个预测变量的关系。残差似乎在预测器2的中间范围内聚集得更紧密,这可能表明在这个范围内模型预测更准确。

  • Pearson残差 vs. hat值(Linear Predictor 1):
    帽子值(也称为杠杆值)度量了每个观测值对其自身预测值的影响程度。较高的hat值可能表明一个观测值具有较高的杠杆作用,可能是一个影响模型的异常值。图中hat值较高的点不多,意味着没有单个观测值对模型有过度影响。

  • Pearson残差 vs. hat值(Linear Predictor 2):
    这个图展示的是第二个预测变量的值。同样,我们希望没有观测值有过大的hat值。大多数观测值似乎有低到中等的hat值,没有迹象表明有单个观测对模型有过度影响。

模型预测

在这里插入图片描述

# 2.代码解释

解释代码
生成模拟数据:使用Beta分布参数 α=2 和 β=5 来模拟真实的成功概率 p。
为每个观察生成一个试验次数,并基于模拟的 p 生成成功次数。
拟合模型:
使用vglm函数从VGAM包拟合Beta二项模型,其中响应变量是成功和失败的次数,解释变量是predictor1predictor2
查看和解释模型摘要:
调用summary()函数来获取模型的详细输出,包括估计的参数和它们的统计显著性。
模型诊断:

使用plot()函数生成模型的诊断图,这有助于检查任何潜在的问题,如拟合不良或异常值。
模型预测:

对新的观察数据(在new_data中定义)进行预测,以展示模型如何应用于实际数据

这篇关于基于R语言实现的beta二项回归模型【理解与实现】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/905215

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依

利用python实现对excel文件进行加密

《利用python实现对excel文件进行加密》由于文件内容的私密性,需要对Excel文件进行加密,保护文件以免给第三方看到,本文将以Python语言为例,和大家讲讲如何对Excel文件进行加密,感兴... 目录前言方法一:使用pywin32库(仅限Windows)方法二:使用msoffcrypto-too