MIT 更新最大自然灾害图像数据集,囊括 19 种灾害事件

2024-04-13 21:58

本文主要是介绍MIT 更新最大自然灾害图像数据集,囊括 19 种灾害事件,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

来源:HyperAI超神经

本文约2600字,建议阅读9分钟

本文为你分享迄今为止规模最大、质量最高的自然灾害卫星图像数据集。

标签:自然灾害 数据集

[ 摘要 ]麻省理工学院在最近 ECCV 2020 上提交的一篇论文中,发布了一套自然灾害图像数据集。这是迄今为止规模最大、质量最高的自然灾害卫星图像数据集。

2020 年,多灾多难的一年。年初爆发的疫情,夏天南方的洪灾,近期美国加州的野火……

洪灾、山火、地震之类的自然灾害,总是威胁着人们的生命财产安全。而在无法避免其发生的情况下,如果能够及时、迅速地发现一些细微的变化,就能更好地制定相应救援方案,更合理地进行资源配置,同时也有助于进行相关新闻的报道。

因此,麻省理工学院的工程学硕士生 Ethan Weber 和合作者 Hassan Kan,在最新论文《Building Disaster Damage Assessment in Satellite Imagery with Multi-Temporal Fusion》(《具有多时相融合的卫星影像中的建筑物灾害破坏评估》)中提出了一个深度学习模型,能够对受损区域的卫星图像进行更快、更精准的评估,从而为急救人员争取更多的时间、最大程度地减少损失。

该论文在近期 CV 顶会 ECCV 2020 上发表

论文地址:https://arxiv.org/pdf/2004.05525.pdf

与此同时,他们还发布了一个最新的用于损坏评估的卫星图像数据集,让图像事件检测的相关研究更进一步,研究人员能实现更精确的定位和量化损失。

用 AI 与时间赛跑:加速灾情评估

对于自然灾害,现场应急小组减少反应时间,迅速响应、采取行动,对于减少损失和挽救生命至关重要。此外,为了更好地在受灾地区部署资源,应急人员必须了解损失的确切位置和严重性,这些同样重要。

目前,应急人员通常通过人力观察卫星图像的方法,来评估灾害损坏程度,但评估过程可能要花费数小时之久,这对于抢救工作极为不利。

人员观察分析卫星图像耗时耗力

是目前自然灾害评估工作中的一个瓶颈

Ethan Weber 的这项研究贡献在于,创建自动分析图像的工具,减少图像分析时间,赢得与时间的赛跑。

另外,其研究通过共享权值的 CNN(卷积神经网络),独立地提供灾前和灾后图像,可以获得更好的性能。

他们还提出了一种新的计算机视觉模型,该模型能够检测在 Twitter 和 Flickr 等社交媒体平台上发布的图片中的事件。

论文中提出的建筑损坏预测、评估模型架构

标记 19 种自然灾害的 22068 张图像

除了提出新模型外,该研究团队还重磅发布了一个新的事件数据集:xBD 数据集。

该数据集包含 22068 张图像,标记有 19 种不同的事件,包括地震,洪水,野火、火山爆发和车祸等。这些图像包括了灾前、灾后图像,图像可用于构建定位和损伤评估这两项任务。

飓风灾前图像(左图)与灾后图像(右图)

据介绍,xBD 数据集是迄今为止第一个建筑破坏评估数据集,是带注释的高分辨率卫星图像中规模最大、质量最高的公共数据集之一。其基本信息如下:

xBD Dataset

发布机构:MIT

包含数量:22068 张图像

数据格式:png

数据大小:31.2GB

更新时间:2020 年 8 月

下载地址:https://hyper.ai/datasets/13272

这些图像分辨率为 1024×1024,其中每个建筑物都有标识符,并在灾前灾后图片中保持一致。

但研究者发现建筑物的分辨率往往太小,模型无法准确绘制建筑物边界。为此,他们在 4 张 512×512 的图像上训练和运行模型,形成左上角、右上角、左下角和右下角象限。

根据这些灾前和灾后数据,损伤评估可以被定义为单时间和多时间任务。在单时间设置中,只有灾后图像被输入模型,该模型必须预测每个像素的损伤水平。在多时间背景下,灾前灾后图像都被输入到模型中,该模型必须在后图像上预测损伤程度。

团队综合多方资料,制定的损坏评估量表

数据集从何而来?

团队表示,这套新数据集旨在填补该领域的空白。现有数据集的图像数量和事件类别的多样性都受到限制。

作者还解释了如何创建数据集、如何创建模型以检测图像中的事件,以及如何过滤嘈杂的社交媒体数据中的事件。

他们的其中一项工作是,过滤了 4000 万张 Flickr 图片,来寻找灾害事件。另外一些工作则是可对地震,洪水和其他自然灾害期间,发布在 Twitter 上的图像进行过滤。

比如,该团队将与自然灾害相关的推文过滤为特定事件,并通过将推文频率与美国国家海洋和大气管理局(NOAA)提供的数据库相关联,来验证这一过程。

Ethan Weber 说:“我对这个数据集能够进行进一步的研究以检测图像中的事件感到兴奋,它也非常有效地激发了人们对计算机视觉界的兴趣。”

他还表示,社交媒体和卫星图像都是有助于应急响应的数据形式。社交媒体提供实地观察,而卫星图像提供宏观的观察(expansive insights),例如确定哪些地区受野火影响最大。

每逢灾害发生,网友通常会在社交媒体上发布实地拍摄照片

正是意识到这种相互联系,Ethan Weber 和他的校友合作,在损害评估方面做出了卓越的成绩。

Ethan Weber 说:“现在我们有了数据,对定位和量化破坏很感兴趣。我们正在与应急组织合作,以保持专注并开展具有现实利益的研究。”

访问 https://hyper.ai/datasets/13127 或点击原文阅读,即可高速下载该数据集。

编辑:黄继彦

这篇关于MIT 更新最大自然灾害图像数据集,囊括 19 种灾害事件的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/901329

相关文章

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

MySQL追踪数据库表更新操作来源的全面指南

《MySQL追踪数据库表更新操作来源的全面指南》本文将以一个具体问题为例,如何监测哪个IP来源对数据库表statistics_test进行了UPDATE操作,文内探讨了多种方法,并提供了详细的代码... 目录引言1. 为什么需要监控数据库更新操作2. 方法1:启用数据库审计日志(1)mysql/mariad

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

SpringBoot中4种数据水平分片策略

《SpringBoot中4种数据水平分片策略》数据水平分片作为一种水平扩展策略,通过将数据分散到多个物理节点上,有效解决了存储容量和性能瓶颈问题,下面小编就来和大家分享4种数据分片策略吧... 目录一、前言二、哈希分片2.1 原理2.2 SpringBoot实现2.3 优缺点分析2.4 适用场景三、范围分片

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模

浅析如何保证MySQL与Redis数据一致性

《浅析如何保证MySQL与Redis数据一致性》在互联网应用中,MySQL作为持久化存储引擎,Redis作为高性能缓存层,两者的组合能有效提升系统性能,下面我们来看看如何保证两者的数据一致性吧... 目录一、数据不一致性的根源1.1 典型不一致场景1.2 关键矛盾点二、一致性保障策略2.1 基础策略:更新数

Oracle 数据库数据操作如何精通 INSERT, UPDATE, DELETE

《Oracle数据库数据操作如何精通INSERT,UPDATE,DELETE》在Oracle数据库中,对表内数据进行增加、修改和删除操作是通过数据操作语言来完成的,下面给大家介绍Oracle数... 目录思维导图一、插入数据 (INSERT)1.1 插入单行数据,指定所有列的值语法:1.2 插入单行数据,指