大模型做时序预测也很强!华人团队激活LLM新能力,超越一众传统模型实现SOTA

本文主要是介绍大模型做时序预测也很强!华人团队激活LLM新能力,超越一众传统模型实现SOTA,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

蔚明 投稿自 凹非寺
量子位 | 公众号 QbitAI

大语言模型潜力被激发——

无需训练大语言模型就能实现高精度时序预测,超越一切传统时序模型。

来自蒙纳士大学、蚂蚁、IBM研究院提出了一种通用框架,结果成功激活大语言模型跨模态处理时序数据的能力。

图片

时序预测有益于城市、能源、交通、遥感等典型复杂系统的决策制定。

自此,大模型有望彻底改变时序/时空数据挖掘方式。

通用大语言模型重编程框架

简单来说,研究团队提出了一个通用框架,将大语言模型轻松用于一般时间序列预测,而无需做任何训练。

主要提出两大关键技术:时序输入重编程;提示做前缀。

Time-LLM首先使用文本原型(Text Prototypes)对输入的时序数据进行重编程,通过使用自然语言表征来表示时序数据的语义信息,进而对齐两种不同的数据模态,使大语言模型无需任何修改即可理解另一个数据模态背后的信息。

为了进一步增强LLM对输入时序数据和对应任务的理解,作者提出了提示做前缀(Prompt-as-Prefix,PaP)的范式,通过在时序数据表征前添加额外的上下文提示与任务指令,充分激活LLM在时序任务上的处理能力。

主要贡献包括:

1、提出了通过重编程大型语言模型用于时序分析的全新概念,无需对主干语言模型做任何修改。

2、提出一个通用语言模型重编程框架Time-LLM,它包括将输入时序数据重新编程为更自然的文本原型表示,并通过声明性提示(例如领域专家知识和任务说明)来增强输入上下文,以指导LLM进行有效的跨域推理。

图片

3、在主流预测任务中的表现始终超过现有最好的模型性能,尤其在少样本和零样本场景中。此外,Time-LLM在保持出色的模型重编程效率的同时,能够实现更高的性能。大大释放LLM在时间序列和其他顺序数据方面尚未开发的潜力。

具体来看这一框架,首先,输入时序数据先通过RevIN归一化操作,然后被切分成不同patch并映射到隐空间。

时序数据和文本数据在表达方式上存在显著差异,两种属于不同的模态。

时间序列既不能直接编辑,也不能无损地用自然语言描述。因此,我们需要将时序输入特征对齐到自然语言文本域上。

图片

而对齐不同模态的一个常见方式是cross-attention,但是LLM固有的词汇表很大,因此无法有效直接将时序特征对齐到所有词上,而且也并不是所有词都和时间序列有对齐的语义关系。

为了解决这个问题,这项工作对词汇表进行了线形组合来获取文本原型,其中文本原型的数量远小于原始词汇量,组合起来可以用于表示时序数据的变化特征。

而为了充分激活LLM在指定时序任务上的能力,这项工作提出了提示做前缀的范式。

通俗点说,就是把时间序列数据集的一些先验信息,以自然语言的方式,作为前缀prompt,和对齐后的时序特征拼接喂给LLM,是不是能够提升预测效果?

图片

在实践中,作者确定了构建有效提示的三个关键组件:

(1)数据集上下文;(2)任务指令,让LLM适配不同的下游任务;(3)统计描述,例如趋势、时延等,让LLM更好地理解时序数据的特性。

图片

团队在长程预测上经典的8大公开数据集上进行了全面的测试。

结果Time-LLM在基准比较中显著超过此前领域最优效果,比如对比直接使用GPT-2的GPT4TS,Time-LLM有明显提升,表明了该方法的有效性。

图片

此外,在zero-shot场景中也表现了很强的预测能力。

图片

本项目获得蚂蚁集团智能引擎事业部旗下AI创新研发部门NextEvo支持。

感兴趣的小伙伴可戳下方链接了解论文详情~

这篇关于大模型做时序预测也很强!华人团队激活LLM新能力,超越一众传统模型实现SOTA的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/897743

相关文章

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依

利用python实现对excel文件进行加密

《利用python实现对excel文件进行加密》由于文件内容的私密性,需要对Excel文件进行加密,保护文件以免给第三方看到,本文将以Python语言为例,和大家讲讲如何对Excel文件进行加密,感兴... 目录前言方法一:使用pywin32库(仅限Windows)方法二:使用msoffcrypto-too

C#使用StackExchange.Redis实现分布式锁的两种方式介绍

《C#使用StackExchange.Redis实现分布式锁的两种方式介绍》分布式锁在集群的架构中发挥着重要的作用,:本文主要介绍C#使用StackExchange.Redis实现分布式锁的... 目录自定义分布式锁获取锁释放锁自动续期StackExchange.Redis分布式锁获取锁释放锁自动续期分布式

springboot使用Scheduling实现动态增删启停定时任务教程

《springboot使用Scheduling实现动态增删启停定时任务教程》:本文主要介绍springboot使用Scheduling实现动态增删启停定时任务教程,具有很好的参考价值,希望对大家有... 目录1、配置定时任务需要的线程池2、创建ScheduledFuture的包装类3、注册定时任务,增加、删