利用python进行分类-预测顾客流失(简版)

2024-04-12 16:32

本文主要是介绍利用python进行分类-预测顾客流失(简版),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

利用python进行分类-预测顾客流失(简版)

96 
鸣人吃土豆  关注
2017.12.16 16:11  字数 878  阅读 166 评论 4 赞赏 2

更新内容:第4点c方式
计算准确率的方式(用了sklearn方式)


由于每个算法都基于某些特定的假设,且均含有某些缺点,因此需要通过大量的实践为特定的问题选择合适的算法。可以这么说:没有任何一种分类器可以在所有的情况下都有良好的表现。
分类器的性能,计算能力,预测能力在很大程度上都依赖于用于模型的相关数据。训练机器学习算法涉及到五个主要的步骤:

  • 1.特征的选择
  • 2.确定性能评价标准
  • 3.选择分类器及其优化算法
  • 4.对模型性能的评估
  • 5.算法的调优

写在前面:接下来的我们通过一些电信数据来看看一些常用的分类器的简单情况(默认参数),通过这些分类器来预测客户是否会流失。这次是一些比较简单的做法,有空再来完善,比如超参调优等。


1.加载数据

数据下载链接https://pan.baidu.com/s/1bp8nloV

import pandas as pd
data = pd.read_csv("customer_churn.csv",header=0,index_col=0)
data.head()

但是在读取的过程中出现了如下错误:

OSError:Initializing from file failed

查看了源码,应该是调用pandas的read_csv()方法时,默认使用C engine作为parser engine,而当文件名中含有中文的时候,用C engine在部分情况下就会出错

所以解决方案有二:

  • 1.将文件路径的中文替换掉
  • 2.在read_csv中加入engine=‘python’参数,即:
data = pd.read_csv("C:\\Users\\Administrator\\OneDrive\\公开\\customer_churn.csv",header=0,index_col=0,engine='python')

2.查看数据

data.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 3333 entries, 1 to 3333
Data columns (total 20 columns):
state                            3333 non-null object
account_length                   3333 non-null int64
area_code                        3333 non-null object
international_plan               3333 non-null object
voice_mail_plan                  3333 non-null object
number_vmail_messages            3333 non-null int64
total_day_minutes                3333 non-null float64
total_day_calls                  3333 non-null int64
total_day_charge                 3333 non-null float64
total_eve_minutes                3333 non-null float64
total_eve_calls                  3333 non-null int64
total_eve_charge                 3333 non-null float64
total_night_minutes              3333 non-null float64
total_night_calls                3333 non-null int64
total_night_charge               3333 non-null float64
total_intl_minutes               3333 non-null float64
total_intl_calls                 3333 non-null int64
total_intl_charge                3333 non-null float64
number_customer_service_calls    3333 non-null int64
churn                            3333 non-null object
dtypes: float64(8), int64(7), object(5)
memory usage: 546.8+ KB

3.特征选取

特征其实就是属性、字段等的意思
我们这里采取比较简单的方式,直接将state 、account_length 、area_code 这三列去掉,因为和是否流失的关系不大

data = data.ix[:,3:]
data.head()

4.将标称特征的值转换为整数,方便算法的运算

这里的话我们有三种方式

  • a.
var = ['international_plan', 'voice_mail_plan','churn']
for v in var:data[v] = data[v].map(lambda a:1 if a=='yes' else 0)
  • b
#可以用字典的方式
data = pd.read_csv("customer_churn.csv",header=0,index_col=0,engine='python')
data = data.ix[:,3:]
mapping = {'yes':1,'no':0}
var = ['international_plan', 'voice_mail_plan','churn']
for v in var:data[v] = data[v].map(mapping)
  • c
#或者也可以使用sklearn里的LabelEncoder类
from sklearn.preprocessing import LabelEncoder
data = pd.read_csv("customer_churn.csv",header=0,index_col=0,engine='python')
data = data.ix[:,3:]
le = LabelEncoder()
var = ['international_plan', 'voice_mail_plan','churn']
for v in var:data[v] = le.fit_transform(data[v])
data[var].head()

c方式我们可以用以下方式得出将yes和no分别转换成了什么整数

le.transform(['yes','no'])

结果

array([1, 0], dtype=int64)

5.将数据分为测试集和训练集

X=data.ix[:,:-1]
y=data.ix[:,-1]
from sklearn.cross_validation import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3,random_state=0)

6.1使用决策树进行分类

#使用决策树
from sklearn import tree
clf = tree.DecisionTreeClassifier(max_depth=3)
clf.fit(X_train,y_train)

我们可以通过以下方式将决策树的图导出来,只是在python上相对R来说要麻烦一点,需要下载Graphviz软件,并将其安装目录下的bin文件夹设置在系统变量中

#将决策树的决策过程导出到当前代码文件所在文件夹
tree.export_graphviz(clf,out_file='tree3.dot')

再在cmd中输入以下命令,将dot文件转换为png文件

dot -T png tree.dot -o tree.png

因为本人用的是jupyter notebook,所以要想在jupyter notebookz中插入图片的话,得用以下命令

%pylab inline
from IPython.display import Image
Image("tree.png")

结果如下


tree.png

可以看到决策树最先是以训练集中的第3列特征进行分支的

#检测分类结果
import numpy as np
print("Test accuracy:%.3f" %(np.sum(y_test==clf.predict(X_test))/len(y_test)))

结果为:Test accuracy:0.910

我们可以利用sklearn里面的东西直接计算准确率

#1
print("Test accuracy:%.3f" % clf.score(X_test,y_test))#2
from sklearn.metrics import accuracy_score
print("Test accuracy:%.3f" % accuracy_score(y_test,clf.predict(X_test)))

结果同样都为0.910

6.2逻辑回归

from sklearn.linear_model import LogisticRegression
clf = LogisticRegression()
clf.fit(X_train,y_train)
print("Test accuracy:%.3f" % clf.score(X_test,y_test))

结果为:Test accuracy:0.870

6.3支持向量机

#使用支持向量机
from sklearn.svm import SVC
clf = SVC()
clf.fit(X_train,y_train)
print("Test accuracy:%.3f" % clf.score(X_test,y_test))

结果为:Test accuracy:0.862

写在最后:从准确率上看,这份数据决策树分类器的泛化能力最好,但是我们这里用的是各个分类器的默认参数,没有进行相关检验,调优,所以目前的结果并不可信,也不能完全按照准确率去比较分类器的优劣

这篇关于利用python进行分类-预测顾客流失(简版)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/897654

相关文章

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python UV安装、升级、卸载详细步骤记录

《PythonUV安装、升级、卸载详细步骤记录》:本文主要介绍PythonUV安装、升级、卸载的详细步骤,uv是Astral推出的下一代Python包与项目管理器,主打单一可执行文件、极致性能... 目录安装检查升级设置自动补全卸载UV 命令总结 官方文档详见:https://docs.astral.sh/

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Python虚拟环境与Conda使用指南分享

《Python虚拟环境与Conda使用指南分享》:本文主要介绍Python虚拟环境与Conda使用指南,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、python 虚拟环境概述1.1 什么是虚拟环境1.2 为什么需要虚拟环境二、Python 内置的虚拟环境工具

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

Python pip下载包及所有依赖到指定文件夹的步骤说明

《Pythonpip下载包及所有依赖到指定文件夹的步骤说明》为了方便开发和部署,我们常常需要将Python项目所依赖的第三方包导出到本地文件夹中,:本文主要介绍Pythonpip下载包及所有依... 目录步骤说明命令格式示例参数说明离线安装方法注意事项总结要使用pip下载包及其所有依赖到指定文件夹,请按照以