基于GSP工具箱的NILM算法matlab仿真

2024-04-12 09:52

本文主要是介绍基于GSP工具箱的NILM算法matlab仿真,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1.课题概述

2.系统仿真结果

3.核心程序与模型

4.系统原理简介

5.完整工程文件


1.课题概述

        基于GSP工具箱的NILM算法matlab仿真。GSP是图形信号处理的缩写,GSP非常适合对未知数据进行分类,尤其是当训练数据非常短时。GSPBox的基本理论是谱图论和图滤波,因此,GSPBox中的主要对象是图,图包括图的基本元素,如节点、边和权重矩阵等。

2.系统仿真结果

3.核心程序与模型

版本:MATLAB2022a

.........................................................................
while m<=M[ijk,m]Smi_train = Smi(1:n,m);Smi_test  = Smi(n+1:N,m);Smi_all   = [Smi_train;Smi_test];dpmi_train= dPmi(1:n,m);dpmi_test = dPmi(n+1:N,m);dpmi_all  = [dpmi_train;dpmi_test]; THR       = THRm(m);%构图,利用GSP工具箱计算得到估计值 G         = gsp_community(N);G         = gsp_adj2vec(G);G         = gsp_estimate_lmax(G);G         = gsp_compute_fourier_basis(G);AA        = full(G.A);%更新图矩阵Adelta     = 2;for i = 1:Nfor j = 1:NAA(i,j) = exp(-1*(dpmi_all(i)-dpmi_all(j))^2/delta^2);endendG.A = sparse(AA);Mask      = Smi_all;%训练过程中,输入m个smi和中的PY         = dpmi_all;%论文公式中的ni%通过GSP工具箱预测未知的电气的Smi变量,因为论文中提到用已知的Smi作为训练label,那么训练已知的smi,得到的就是未知的smisol       = gsp_classification_tv_new(G,Mask,Y,0.5);Pm_pre    = sol(n+1:N);Kr        = mean(abs(Pm_pre))/mean(abs(dpmi_all(n+1:N)));Pm_pre    = [dpmi_train;Pm_pre/Kr];for i = 1:Rif i > n & abs(Pm_pre(i)) >= THRm(m)Smi_pre(i,m) = 1;end if i > n & abs(Pm_pre(i)) < THRm(m)Smi_pre(i,m) = -1;end   endSreal{m}  = Smi0(:,m);Spred{m}  = Smi_pre(:,m);%即通过GSP工具箱得到公式11中的SmPreal{m}  = dpmi_all;Ppred{m}  = Pm_pre;m = m + 1;
end%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if ijk == 1save R1.mat Sreal Spred Preal Ppred N n X Pi dPi dPmi THR0 THRm Smi Smi0 Pi_train Pi_test Pi_all
end
if ijk == 2save R2.mat Sreal Spred Preal Ppred N n X Pi dPi dPmi THR0 THRm Smi Smi0 Pi_train Pi_test Pi_all
end
if ijk == 3save R3.mat Sreal Spred Preal Ppred N n X Pi dPi dPmi THR0 THRm Smi Smi0 Pi_train Pi_test Pi_all
endclear Sreal Spred Preal Ppred N n X Pi dPi dPmi THR0 THRm Smi Smi0 Pi_train Pi_test Pi_allend
02_061m

4.系统原理简介

        非侵入式负荷监测(Non-Intrusive Load Monitoring, NILM)是一种通过分析整体电能消耗数据,解析出各个子设备独立功耗的技术。近年来,图信号处理(Graph Signal Processing, GSP)作为一种新兴的信号处理范式,被引入到NILM领域,以更好地表征和处理家庭或建筑内部电器之间的复杂交互关系。

       在GSP中,电气系统中的各个设备被视为图(graph)上的节点,设备之间的相互影响关系通过边(edges)表示。图信号是指定义在图节点上的实值函数,它可以代表节点的用电状态或功率消耗。设G=(V,E,W)是一个加权无向图,其中:

  • V是节点集合,代表单个电器或负荷组;
  • E是边集合,表示节点之间的关联性;
  • W是权重矩阵,其元素wij​量化了节点i和j之间的耦合强度。

       在NILM中,全局总能耗信号视为图信号x,它是在图G上定义的,即x∈R∣V∣,其中∣V∣是节点的数量。目标是通过某种滤波或分解技术从x中提取出代表各个子设备消耗的局部图信号。

       本课题的算法流程图如下图所示:

5.完整工程文件

v

v

这篇关于基于GSP工具箱的NILM算法matlab仿真的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/896798

相关文章

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1