【域适应】基于散度成分分析(SCA)的四分类任务典型方法实现

2024-04-11 21:20

本文主要是介绍【域适应】基于散度成分分析(SCA)的四分类任务典型方法实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

关于

SCA(scatter component analysis)是基于一种简单的几何测量,即分散,它在再现内核希尔伯特空间上进行操作。 SCA找到一种在最大化类的可分离性、最小化域之间的不匹配和最大化数据的可分离性之间进行权衡的表示;每一个都通过分散进行量化。 

参考论文:Shibboleth Authentication Request

工具

MATLAB

方法实现

SCA变换实现
function [test_accuracy, predicted_labels, Zs, Zt] = SCA(X_s_cell, Y_s_cell, X_t, Y_t, params)INPUT(params is optional):X_s_cell          - cell of (n_s*d) matrix, each matrix corresponds to the instance features of a source domainY_s_cell          - cell of (n_s*1) matrix, each matrix corresponds to the instance labels of a source domainX_t               - (n_t*d) matrix, rows correspond to instances and columns correspond to featuresY_t               - (n_t*1) matrix, each row is the class label of corresponding instances in X_t[params]          - params.beta:      vector of validated values of betaparams.delta:     vector of validated values of deltaparams.k_list:    vector of validated dimension of the transformed spaceparams.X_v:       (n_v*d) matrix of instance features of validation set (use the source instances if not provided)params.Y_v:       (n_v*1) matrix of instance labels of validation set (use the source instances if not provided)params.verbose:   if true, show the validation accuracy of each parameter settingOUTPUT:test_accuracy     - test accuracy on target instancespredicted_labels  - predicted labels of target instancesZs                - projected source domain instancesZt                - projected target domain instancesShoubo Hu (shoubo.sub [at] gmail.com)
2019-06-02Reference
[1] Ghifary, M., Balduzzi, D., Kleijn, W. B., & Zhang, M. (2017). Scatter component analysis: A unified framework for domain adaptation and domain generalization. IEEE transactions on pattern analysis and machine intelligence, 39(7), 1414-1430.
%}if nargin < 4error('Error. \nOnly %d input arguments! At least 4 required', nargin);elseif nargin == 4% default params valuesbeta = [0.1 0.3 0.5 0.7 0.9];delta = [1e-3 1e-2 1e-1 1 1e1 1e2 1e3 1e4 1e5 1e6];k_list = [2];X_v = cat(1, X_s_cell{:});Y_v = cat(1, Y_s_cell{:});verbose = false;elseif nargin == 5if ~isfield(params, 'beta')beta = [0.1 0.3 0.5 0.7 0.9];elsebeta = params.beta;endif ~isfield(params, 'delta')delta = [1e-3 1e-2 1e-1 1 1e1 1e2 1e3 1e4 1e5 1e6];elsedelta = params.delta;endif ~isfield(params, 'k_list')k_list = [2];elsek_list = params.k_list;endif ~isfield(params, 'verbose')verbose = false;elseverbose = params.verbose;endif ~isfield(params, 'X_v')X_v = cat(1, X_s_cell{:});Y_v = cat(1, Y_s_cell{:});elseif ~isfield(params, 'Y_v')error('Error. Labels of validation set needed!');endX_v = params.X_v;Y_v = params.Y_v;endend% ----- training phase% ----- ----- source domainsX_s = cat(1, X_s_cell{:});Y_s = cat(1, Y_s_cell{:});fprintf('Number of source domains: %d, Number of classes: %d.\n', length(X_s_cell), length(unique(Y_s)) );fprintf('Validating hyper-parameters ...\n');dist_s_s = pdist2(X_s, X_s);dist_s_s = dist_s_s.^2;sgm_s = compute_width(dist_s_s);% ----- ----- validation setdist_s_v = pdist2(X_s, X_v);dist_s_v = dist_s_v.^2;sgm_v = compute_width(dist_s_s);n_s = size(X_s, 1);n_v = size(X_v, 1);H_s = eye(n_s) - ones(n_s)./n_s;H_v = eye(n_v) - ones(n_v)./n_v;K_s_s = exp(-dist_s_s./(2 * sgm_s * sgm_s));K_s_v = exp(-dist_s_v./(2 * sgm_v * sgm_v));K_s_v_bar = H_s * K_s_v * H_v;[P, T, D, Q, K_s_s_bar] = SCA_terms(K_s_s, X_s_cell, Y_s_cell);acc_mat = zeros(length(k_list), length(beta), length(delta));for i = 1:length(beta)cur_beta = beta(i);for j = 1:length(delta)cur_delta = delta(j);[B, A] = SCA_trans(P, T, D, Q, K_s_s_bar, cur_beta, cur_delta, 1e-5);for k = 1:length(k_list)[acc, ~, ~, ~] = SCA_test(B, A, K_s_s_bar, K_s_v_bar, Y_s, Y_v, k_list( k ) );acc_mat(k, i, j) = acc;if verbosefprintf('beta: %f, delta: %f, acc: %f\n', cur_beta, cur_delta, acc);endendendendfprintf('Validation done! Classifying the target domain instances ...\n');% ----- test phase% ----- ----- get optimal parametersacc_tr_best = max( acc_mat(:) );ind = find( acc_mat == acc_tr_best );[k, i, j] = size( acc_mat );[best_k, best_i, best_j] = ind2sub([k, i, j], ind(1));best_beta = beta(best_i);best_delta = delta(best_j);best_k = k_list(best_k);% ----- ----- test on the target domaindist_s_t = pdist2(X_s, X_t);dist_s_t = dist_s_t.^2;sgm = compute_width(dist_s_t);K_s_t = exp(-dist_s_t./(2 * sgm * sgm));n_s = size(X_s, 1);H_s = eye(n_s) - ones(n_s)./n_s;n_t = size(X_t, 1);H_t = eye(n_t) - ones(n_t)./n_t;K_s_t_bar = H_s * K_s_t * H_t;[B, A] = SCA_trans(P, T, D, Q, K_s_s_bar, best_beta, best_delta, 1e-5);[test_accuracy, predicted_labels, Zs, Zt] = SCA_test(B, A, K_s_s_bar, K_s_t_bar, Y_s, Y_t, best_k );fprintf('Test accuracy: %f\n', test_accuracy);end
基于SCA的域迁移分类实现
clear all
clcaddpath('./modules');
load('./syn_data/data.mat');% ----- parameters
% target / all / source domains
tgt_dm = [5];
val_dm = [3 4];
src_dm = [1 2];data_cell = XY_cell;
X_t = data_cell{tgt_dm(1)}(:, 1:2);
Y_t = data_cell{tgt_dm(1)}(:, 3);% ----- training data
X_s_cell = cell(1,length(src_dm));
Y_s_cell = cell(1,length(src_dm));    
for idx = 1:length(src_dm)cu_dm = src_dm(1, idx);X_s_cell{idx} = data_cell{cu_dm}(:, 1:2);Y_s_cell{idx} = data_cell{cu_dm}(:, 3);
end
% ----- validation data
X_v = [];
Y_v = [];
for idx = 1:length(val_dm)cu_dm = val_dm(1, idx);X_v = [X_v; data_cell{cu_dm}(:, 1:2)];Y_v = [Y_v; data_cell{cu_dm}(:, 3)];
endparams.X_v = X_v;
params.Y_v = Y_v;
params.verbose = true;
[test_accuracy, predicted_labels, Zs, Zt] = SCA(X_s_cell, Y_s_cell, X_t, Y_t, params);

代码获取

相关问题和代码开发,可后台私信沟通交流。

这篇关于【域适应】基于散度成分分析(SCA)的四分类任务典型方法实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/895216

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

MySQL数据库双机热备的配置方法详解

《MySQL数据库双机热备的配置方法详解》在企业级应用中,数据库的高可用性和数据的安全性是至关重要的,MySQL作为最流行的开源关系型数据库管理系统之一,提供了多种方式来实现高可用性,其中双机热备(M... 目录1. 环境准备1.1 安装mysql1.2 配置MySQL1.2.1 主服务器配置1.2.2 从

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符