MPC模型预测控制(二)-MATLAB代码实现

2024-04-10 14:58

本文主要是介绍MPC模型预测控制(二)-MATLAB代码实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

update:MPC的QQ群

第一个群已经满500人(贫穷使我充不起鹅厂会员),这是第二个群。

群都满了。

 

https://blog.csdn.net/tingfenghanlei/article/details/85046120在这篇文章里主要讲了下MPC的原理和C++实现的一个简单例子。

这篇文章里主要写MPC的MATLAB实现。许多做控制的同学还是很喜欢用MATLAB的,可以先用MATLAB跑跑看自己的代码效果怎么样。

我看MPC的MATLAB代码实现,主要看的是《无人驾驶车辆模型预测控制》这本书,书里的代码也比较完备。这里实现的代码基本上都是这本书中的,CSDN也有下载链接,大家可以去下载观看。

在实现MPC的代码之前,书中讲了LQR的代码实现。

LQR和MPC的区别:

LQR solves an optimization,

MPC solves a constrained optimization

In practice, optimization could lead to over-voltage, ovre-current, excessive force etc. You want a motor starts very quickly? The optimizer tells you give it an infinite electric current. So you use a saturation which destroys the optimality. MPC solves an optimization without excessing the limits.

In addition, LQR can be solved offline for an LTI system. However, MPC is not a linear controller. Typically, it must be solved online at each sample time. It requires higher computational load. MPC has toolbox in MATLAB. You can use it before you learn its theory in deep.

参考链接https://www.quora.com/Whats-the-difference-between-constrained-LQR-and-MPC

function LQR_1()
%这里先从简单开始,给定一个直线车道和车辆位置偏差。
%参考轨迹的生成方法有两种:
%1.车辆在Path上投影,然后在PATH上选取一系列的点作参考点
%*现在遇到的问题是Q R的参数怎么设置。而且通用性怎么办?*%clear all;
close all;
clc;
%% 给定参数:vel = 6; % 纵向车速,单位:m/s
L=2.85;%轴距
T=0.05;% sample time, control period
% 给定圆形参考轨迹CEN=[0,0];       % 圆心Radius=20;       % 半径%% 设置参数
Hp =10;%predictive horizion, control horizon 
N_l=200;% 设置迭代次数Nx=3;%状态变量参数的个数
Nu=1;%控制变量参数的个数FWA=zeros(N_l,1);%前轮偏角
FWA(1,1)= 0; %初始状态的前轮偏角x_real=zeros(Nx,N_l);%实际状态
x_real(:,1)= [22 0 pi/2]; %x0=车辆初始状态X_init初始状态
% x_piao=zeros(N_l,Nx);%实际状态与参考轨迹的误差
% 
% u_real=zeros(N_l,Nu);%实际的控制量
% u_piao=zeros(N_l,Nu);%实际控制量与参考控制量的误差% X_PIAO=zeros(N_l,3*Hp);%通过DR估计的状态
% 
% XXX=zeros(N_l,3*Hp);%用于保持每个时刻预测的所有状态值RefTraj=zeros(3,1);
Delta_x = zeros(3,1);Q=[10 0 0; 0 10 0; 0 0 100];
R=[10];%r是对控制量误差的weighting matricePk=[1 0 0; 0 1 0; 0 0 1]; %人为给定,相当于QN
Vk=[0 0 0]'; %人为给定,相当于QN%%  算法实现u_feedBackward=0;u_feedForward=0;%*首先生成参考轨迹,画出图来作参考*%[RefTraj_x,RefTraj_y,RefTraj_theta,RefTraj_delta]=Func_CircularReferenceTrajGenerate(x_real(1,1),x_real(1,2),CEN(1),CEN(2),Radius,250,vel,T,L);figure(1) %绘制参考路径
plot(RefTraj_x,RefTraj_y,'k')
xlabel('x','fontsize',14)
ylabel('y','fontsize',14)
title('Plot of x vs y - Ref. Trajectory');
legend('reference traj');
axis equal 
grid on
hold onfor i=1:1:N_lG_Test = 3;%先确定参考点和确定矩阵A,B.这里姑且认为A和B是不变的[RefTraj_x,RefTraj_y,RefTraj_theta,RefTraj_delta]=Func_CircularReferenceTrajGenerate(x_real(1,i),x_real(2,i),CEN(1),CEN(2),Radius,Hp,vel,T,L);u_feedForward = RefTraj_delta(G_Test);%前馈控制量
%     u_feedForward=0;RefTraj_x(G_Test)RefTraj_y(G_Test)RefTraj_theta(G_Test)Delta_x(1,1) = x_real(1,i) - RefTraj_x(G_Test);Delta_x(2,1) = x_real(2,i) - RefTraj_y(G_Test);Delta_x(3,1) = x_real(3,i) - RefTraj_theta(G_Test);if  Delta_x(3,1) > piDelta_x(3,1) = Delta_x(3,1)-2*pi;else if Delta_x(3,1) < -1*piDelta_x(3,1) = Delta_x(3,1) +2*pi;elseDelta_x(3,1) = Delta_x(3,1);end            end% 通过Backward recursion 求K    for  j=Hp:-1:2   Pk_1 = Pk;Vk_1 = Vk;     A=[1    0   -vel*sin(RefTraj_theta(j-1))*T; 0    1   vel*cos(RefTraj_theta(j-1))*T; 0    0   1;];
%         B=[cos(RefTraj_theta(j-1))*T   0; sin(RefTraj_theta(j-1))*T   0; 0            vel*T/L;]; COS2 = cos(RefTraj_delta(j-1))^2;B=[ 0 0  vel*T/(L*COS2)]'; K = (B'*Pk_1*A)/(B'*Pk_1*B+R);Ku = R/(B'*Pk_1*B+R);Kv = B'/(B'*Pk_1*B+R);Pk=A'*Pk_1*(A-B*K)+Q;   Vk=(A-B*K)'*Vk_1 - K'*R*RefTraj_delta(j-1); endu_feedBackward = -K*(Delta_x)-Ku*u_feedForward-Kv*Vk_1;  FWA(i+1,1)=u_feedForward+u_feedBackward;[x_real(1,i+1),x_real(2,i+1),x_real(3,i+1)]=Func_VehicleKineticModule_Euler(x_real(1,i),x_real(2,i),x_real(3,i),vel,FWA(i,1),FWA(i+1,1),T,L);  end%%   绘图
%        figure(1);
%     plot(RefTraj_x,RefTraj_y,'b')
%     hold on;plot(x_real(1,:),x_real(2,:),'r*');title('跟踪结果对比');xlabel('横向位置X');% axis([-1 5 -1 3]);ylabel('纵向位置Y');  end

还有4个子函数

function K=Func_Alpha_Pos(Xb,Yb,Xn,Yn)
AngleY=Yn-Yb;
AngleX=Xn-Xb;
%***求Angle*******%
if Xb==Xnif Yn>YbK=pi/2;elseK=3*pi/2;end
elseif Yb==Ynif Xn>XbK=0;elseK=pi;endelseK=atan(AngleY/AngleX);end    
end
%****修正K,使之在0~360°之间*****%if (AngleY>0&&AngleX>0)%第一象限K=K;elseif (AngleY>0&&AngleX<0)||(AngleY<0&&AngleX<0)%第二、三象限K=K+pi;else if (AngleY<0&&AngleX>0)%第四象限K=K+2*pi;  elseK=K;endend
end
function Theta=Func_Theta_Pos(Alpha)if Alpha >= 3*pi/2Theta = Alpha-3*pi/2;
elseTheta = Alpha+pi/2;
endend
function [RefTraj_x,RefTraj_y,RefTraj_theta,RefTraj_delta]=Func_CircularReferenceTrajGenerate(Pos_x,Pos_y,CEN_x,CEN_y,Radius,N,Velo,Ts,L)
%RefTraj为要生成的参考路径
%Pos_x,Pos_y为车辆坐标
%CEN_x,CEN_y,Radius圆心与半径
%N要生成几个参考点,即预测空间。
%Velo,Ts车速与采样时间
%L汽车的轴距
RefTraj=zeros(N,4);%生成的参考路径
Alpha_init=Func_Alpha_Pos(CEN_x,CEN_y,Pos_x,Pos_y);%首先根据车辆位置和圆心确定alphaOmega=Velo/Radius%已知车速和半径,可以求得角速度。DFWA=atan(L/Radius);for k=1:1:NAlpha(k)=Alpha_init+Omega*Ts*(k-1);RefTraj(k,1)=Radius*cos(Alpha(k))+CEN_x;%xRefTraj(k,2)=Radius*sin(Alpha(k))+CEN_y;%yRefTraj(k,3)=Func_Theta_Pos(Alpha(k));%theta  RefTraj(k,4)=DFWA;%前轮偏角,可以当做前馈量end
RefTraj_x= RefTraj(:,1);
RefTraj_y= RefTraj(:,2);
RefTraj_theta= RefTraj(:,3);
RefTraj_delta= RefTraj(:,4);end
function [X,Y,H]=Func_VehicleKineticModule_Euler(x,y,heading,vel,FWA,DFWA,T,L)
%车辆运动学模型,状态量,x,y,heading;控制量:vel=constant,FWA
%固定的步数,来求得数值解%%
%initial the status of the vehicle
num=100;
Xmc=zeros(1,num);
Ymc=zeros(1,num);
Headingmc=zeros(1,num);
Xmc(1)=x;
Ymc(1)=y;%x,y初始坐标
Headingmc(1)=heading;%航向,Headingrate=zeros(1,num);
FrontWheelAngle=zeros(1,num);t=T/num;
%%
FrontWheelAngle=linspace(FWA,DFWA,num);%前轮偏角
Headingrate=vel*tan(FrontWheelAngle)/L;
for i=2:numHeadingmc(i)=Headingmc(i-1)+Headingrate(i)*t;Xmc(i)=Xmc(i-1)+vel*t*cos(Headingmc(i-1));Ymc(i)=Ymc(i-1)+vel*t*sin(Headingmc(i-1));
end
%%X=Xmc(num);Y=Ymc(num);H=Headingmc(num);
end%% test
% [X,Y,H]=VehicleKineticModule_Euler(0,0,0,10,0,3,0.1,2.85)
%plot(X,Y,'b');

现在再看看MPC的代码实现

clc;
close all;
clear all;
%% 参考轨迹生成
N=100;%参考轨迹点数量
T=0.05;%采样时间,控制周期
% Xout=zeros(2*N,3);
% Tout=zeros(2*N,1);
Xout=zeros(N,3);
Tout=zeros(N,1);
for k=1:1:NXout(k,1)=k*T;Xout(k,2)=2;Xout(k,3)=0;Tout(k,1)=(k-1)*T;
end%% Tracking a constant reference trajectory
Nx=3;%状态量个数
Nu =2;%控制量个数
Tsim =20;%仿真时间
X0 = [0 0 pi/3];%初始状态
[Nr,Nc] = size(Xout); % Nr is the number of rows of Xout,100*3
% Mobile Robot Parameters
c = [1 0 0 0;0 1 0 0;0 0 1 0;0 0 0 1];
L = 1;%车辆轴距
Rr = 1;
w = 1;
% Mobile Robot variable Model
vd1 = Rr*w; % For circular trajectory,参考系统的纵向速度
vd2 = 0;%参考系统的前轮偏角%根据控制系统的维度信息,提前定义好相关矩阵并赋值
x_real=zeros(Nr,Nc);%X的真实状态
x_piao=zeros(Nr,Nc);%X的误差状态
u_real=zeros(Nr,2);%真实控制量
u_piao=zeros(Nr,2);%误差控制量
x_real(1,:)=X0;%初始状态
x_piao(1,:)=x_real(1,:)-Xout(1,:);%与预期的误差值
X_PIAO=zeros(Nr,Nx*Tsim);
XXX=zeros(Nr,Nx*Tsim);%用于保持每个时刻预测的所有状态值
q=[1 0 0;0 1 0;0 0 0.5];
Q_cell=cell(Tsim,Tsim);
for i=1:1:Tsimfor j=1:1:Tsimif i==jQ_cell{i,j}=q;else Q_cell{i,j}=zeros(Nx,Nx);end end
end
Q=cell2mat(Q_cell);%权重矩阵
R=0.1*eye(Nu*Tsim,Nu*Tsim);%权重矩阵%模型预测控制主体
for i=1:1:Nrt_d =Xout(i,3);a=[1    0   -vd1*sin(t_d)*T;0    1   vd1*cos(t_d)*T;0    0   1;];b=[cos(t_d)*T   0;sin(t_d)*T   0;0            T;];     A_cell=cell(Tsim,1);B_cell=cell(Tsim,Tsim);for j=1:1:TsimA_cell{j,1}=a^j;for k=1:1:Tsimif k<=jB_cell{j,k}=(a^(j-k))*b;elseB_cell{j,k}=zeros(Nx,Nu);endendendA=cell2mat(A_cell);B=cell2mat(B_cell);H=2*(B'*Q*B+R);f=2*B'*Q*A*x_piao(i,:)';A_cons=[];b_cons=[];lb=[-1;-1];ub=[1;1];tic[X,fval(i,1),exitflag(i,1),output(i,1)]=quadprog(H,f,A_cons,b_cons,[],[],lb,ub);%二次规划求解tocX_PIAO(i,:)=(A*x_piao(i,:)'+B*X)';if i+j<Nrfor j=1:1:TsimXXX(i,1+3*(j-1))=X_PIAO(i,1+3*(j-1))+Xout(i+j,1);XXX(i,2+3*(j-1))=X_PIAO(i,2+3*(j-1))+Xout(i+j,2);XXX(i,3+3*(j-1))=X_PIAO(i,3+3*(j-1))+Xout(i+j,3);endelsefor j=1:1:TsimXXX(i,1+3*(j-1))=X_PIAO(i,1+3*(j-1))+Xout(Nr,1);XXX(i,2+3*(j-1))=X_PIAO(i,2+3*(j-1))+Xout(Nr,2);XXX(i,3+3*(j-1))=X_PIAO(i,3+3*(j-1))+Xout(Nr,3);endendu_piao(i,1)=X(1,1);u_piao(i,2)=X(2,1);Tvec=[0:0.05:4];X00=x_real(i,:);vd11=vd1+u_piao(i,1);vd22=vd2+u_piao(i,2);XOUT=dsolve('Dx-vd11*cos(z)=0','Dy-vd11*sin(z)=0','Dz-vd22=0','x(0)=X00(1)','y(0)=X00(2)','z(0)=X00(3)');t=T; x_real(i+1,1)=eval(XOUT.x);x_real(i+1,2)=eval(XOUT.y);x_real(i+1,3)=eval(XOUT.z);if(i<Nr)x_piao(i+1,:)=x_real(i+1,:)-Xout(i+1,:);endu_real(i,1)=vd1+u_piao(i,1);u_real(i,2)=vd2+u_piao(i,2);figure(1);plot(Xout(1:Nr,1),Xout(1:Nr,2));hold on;plot(x_real(i,1),x_real(i,2),'r*');title('跟踪结果对比');xlabel('横向位置X');axis([-1 5 -1 3]);ylabel('纵向位置Y');hold on;for k=1:1:TsimX(i,k+1)=XXX(i,1+3*(k-1));Y(i,k+1)=XXX(i,2+3*(k-1));endX(i,1)=x_real(i,1);Y(i,1)=x_real(i,2);plot(X(i,:),Y(i,:),'y.')hold on;end
% figure(5)
% plot(X(2,:),Y(2,:),'b');
%% 以下为绘图部分
figure(2)
subplot(3,1,1);
plot(Tout(1:Nr),Xout(1:Nr,1),'k--');
hold on;
plot(Tout(1:Nr),x_real(1:Nr,1),'k');
%grid on;
%title('状态量-横向坐标X对比');
xlabel('采样时间T');
ylabel('横向位置X')
subplot(3,1,2);
plot(Tout(1:Nr),Xout(1:Nr,2),'k--');
hold on;
plot(Tout(1:Nr),x_real(1:Nr,2),'k');
%grid on;
%title('状态量-横向坐标Y对比');
xlabel('采样时间T');
ylabel('纵向位置Y')
subplot(3,1,3);
plot(Tout(1:Nr),Xout(1:Nr,3),'k--');
hold on;
plot(Tout(1:Nr),x_real(1:Nr,3),'k');
%grid on;
hold on;
%title('状态量-\theta对比');
xlabel('采样时间T');
ylabel('\theta')figure(3)
subplot(2,1,1);
plot(Tout(1:Nr),u_real(1:Nr,1),'k');
%grid on;
%title('控制量-纵向速度v对比');
xlabel('采样时间T');
ylabel('纵向速度')
subplot(2,1,2)
plot(Tout(1:Nr),u_real(1:Nr,2),'k');
%grid on;
%title('控制量-角加速度对比');
xlabel('采样时间T');
ylabel('角加速度')figure(4)
subplot(3,1,1);
plot(Tout(1:Nr),x_piao(1:Nr,1),'k');
%grid on;
xlabel('采样时间T');
ylabel('e(x)');
subplot(3,1,2);
plot(Tout(1:Nr),x_piao(1:Nr,2),'k');
%grid on;
xlabel('采样时间T');
ylabel('e(y)');
subplot(3,1,3);
plot(Tout(1:Nr),x_piao(1:Nr,3),'k');
%grid on;
xlabel('采样时间T');
ylabel('e(\theta)');

添加了一些注释,但是感觉这个代码写的不是很好。

下次看到好的MPC代码我会放上来。

这篇关于MPC模型预测控制(二)-MATLAB代码实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/891382

相关文章

使用animation.css库快速实现CSS3旋转动画效果

《使用animation.css库快速实现CSS3旋转动画效果》随着Web技术的不断发展,动画效果已经成为了网页设计中不可或缺的一部分,本文将深入探讨animation.css的工作原理,如何使用以及... 目录1. css3动画技术简介2. animation.css库介绍2.1 animation.cs

Java进行日期解析与格式化的实现代码

《Java进行日期解析与格式化的实现代码》使用Java搭配ApacheCommonsLang3和Natty库,可以实现灵活高效的日期解析与格式化,本文将通过相关示例为大家讲讲具体的实践操作,需要的可以... 目录一、背景二、依赖介绍1. Apache Commons Lang32. Natty三、核心实现代

SpringBoot实现接口数据加解密的三种实战方案

《SpringBoot实现接口数据加解密的三种实战方案》在金融支付、用户隐私信息传输等场景中,接口数据若以明文传输,极易被中间人攻击窃取,SpringBoot提供了多种优雅的加解密实现方案,本文将从原... 目录一、为什么需要接口数据加解密?二、核心加解密算法选择1. 对称加密(AES)2. 非对称加密(R

基于Go语言实现Base62编码的三种方式以及对比分析

《基于Go语言实现Base62编码的三种方式以及对比分析》Base62编码是一种在字符编码中使用62个字符的编码方式,在计算机科学中,,Go语言是一种静态类型、编译型语言,它由Google开发并开源,... 目录一、标准库现状与解决方案1. 标准库对比表2. 解决方案完整实现代码(含边界处理)二、关键实现细

使用Python自动化生成PPT并结合LLM生成内容的代码解析

《使用Python自动化生成PPT并结合LLM生成内容的代码解析》PowerPoint是常用的文档工具,但手动设计和排版耗时耗力,本文将展示如何通过Python自动化提取PPT样式并生成新PPT,同时... 目录核心代码解析1. 提取 PPT 样式到 jsON关键步骤:代码片段:2. 应用 JSON 样式到

MySQL精准控制Binlog日志数量的三种方案

《MySQL精准控制Binlog日志数量的三种方案》作为数据库管理员,你是否经常为服务器磁盘爆满而抓狂?Binlog就像数据库的“黑匣子”,默默记录着每一次数据变动,但若放任不管,几天内这些日志文件就... 目录 一招修改配置文件:永久生效的控制术1.定位my.cnf文件2.添加核心参数不重启热更新:高手应

python通过curl实现访问deepseek的API

《python通过curl实现访问deepseek的API》这篇文章主要为大家详细介绍了python如何通过curl实现访问deepseek的API,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编... API申请和充值下面是deepeek的API网站https://platform.deepsee

SpringBoot实现二维码生成的详细步骤与完整代码

《SpringBoot实现二维码生成的详细步骤与完整代码》如今,二维码的应用场景非常广泛,从支付到信息分享,二维码都扮演着重要角色,SpringBoot是一个非常流行的Java基于Spring框架的微... 目录一、环境搭建二、创建 Spring Boot 项目三、引入二维码生成依赖四、编写二维码生成代码五

MyBatisX逆向工程的实现示例

《MyBatisX逆向工程的实现示例》本文主要介绍了MyBatisX逆向工程的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录逆向工程准备好数据库、表安装MyBATisX插件项目连接数据库引入依赖pom.XML生成实体类、

C#实现查找并删除PDF中的空白页面

《C#实现查找并删除PDF中的空白页面》PDF文件中的空白页并不少见,因为它们有可能是作者有意留下的,也有可能是在处理文档时不小心添加的,下面我们来看看如何使用Spire.PDFfor.NET通过C#... 目录安装 Spire.PDF for .NETC# 查找并删除 PDF 文档中的空白页C# 添加与删