如何将Paddle(Lite)模型转换为TensorFlow(Lite)模型

2024-04-09 20:20

本文主要是介绍如何将Paddle(Lite)模型转换为TensorFlow(Lite)模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

模型间的相互转换在深度学习应用中很常见,paddlelite和TensorFlowLite是移动端常用的推理框架,有时候需要将模型在两者之间做转换,本文将对转换方法做说明。

环境准备

建议使用TensorFlow2.14,PaddlePaddle 2.6

docker pull tensorflow/tensorflow:2.14.0

Step1:From Paddle to ONNX

直接参考https://github.com/PaddlePaddle/Paddle2ONNX/blob/develop/docs/zh/compile.md 源码编译Paddle2ONNX
然后执行

paddle2onnx --model_dir . --model_filename your.pdmodel --params_filename your.pdiparams --save_file model.onnx   
会看到输出                           
[Paddle2ONNX] Start to parse PaddlePaddle model...
[Paddle2ONNX] Model file path: ./pdmodel.pdmodel
[Paddle2ONNX] Parameters file path: ./pdmodel.pdiparams
[Paddle2ONNX] Start to parsing Paddle model...
[Paddle2ONNX] [bilinear_interp_v2: bilinear_interp_v2_1.tmp_0] Requires the minimal opset version of 11.
[Paddle2ONNX] [pixel_shuffle: pixel_shuffle_1.tmp_0] Requires the minimal opset version of 11.
[Paddle2ONNX] [pixel_shuffle: pixel_shuffle_2.tmp_0] Requires the minimal opset version of 11.
[Paddle2ONNX] Due to the operator: bilinear_interp_v2, requires opset_version >= 11.
[Paddle2ONNX] Opset version will change to 11 from 9
[Paddle2ONNX] Use opset_version = 11 for ONNX export.
[Paddle2ONNX] PaddlePaddle model is exported as ONNX format now.
2024-04-09 11:55:50 [INFO]	===============Make PaddlePaddle Better!================
2024-04-09 11:55:50 [INFO]	A little survey: https://iwenjuan.baidu.com/?code=r8hu2s

关于pdparams和pdiparams两种参数文件的区别,参考https://www.paddlepaddle.org.cn/documentation/docs/zh/faq/save_cn.html中的描述

Step2:From ONNX to TensorFlow

使用https://github.com/onnx/onnx-tensorflow

pip install tensorflow-addons
pip install tensorflow-probability==0.22.1 
pip install onnx-tf

接下来

onnx-tf convert -i model.onnx -o model.pb

会看到输出

2024-04-09 07:03:32,346 - onnx-tf - INFO - Start converting onnx pb to tf saved model
2024-04-09 07:03:41,015 - onnx-tf - INFO - Converting completes successfully.
INFO:onnx-tf:Converting completes successfully.

在model.pb目录下可以看到saved_model.pb

Step3:From TensorFlow to tflite

参考https://www.tensorflow.org/lite/convert?hl=zh-cn 编写python脚本

import tensorflow as tf
# Convert the model
converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir) # path to the SavedModel directory
tflite_model = converter.convert()# Save the model.
with open('model.tflite', 'wb') as f:f.write(tflite_model)

运行python脚本,会看到输出

2024-04-09 07:16:45.514656: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:378] Ignored output_format.
2024-04-09 07:16:45.514767: W tensorflow/compiler/mlir/lite/python/tf_tfl_flatbuffer_helpers.cc:381] Ignored drop_control_dependency.
2024-04-09 07:16:45.515630: I tensorflow/cc/saved_model/reader.cc:83] Reading SavedModel from: .
2024-04-09 07:16:45.517291: I tensorflow/cc/saved_model/reader.cc:51] Reading meta graph with tags { serve }
2024-04-09 07:16:45.517352: I tensorflow/cc/saved_model/reader.cc:146] Reading SavedModel debug info (if present) from: .
2024-04-09 07:16:45.523781: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:382] MLIR V1 optimization pass is not enabled
2024-04-09 07:16:45.524480: I tensorflow/cc/saved_model/loader.cc:233] Restoring SavedModel bundle.
2024-04-09 07:16:45.543346: I tensorflow/cc/saved_model/loader.cc:217] Running initialization op on SavedModel bundle at path: .
2024-04-09 07:16:45.559402: I tensorflow/cc/saved_model/loader.cc:316] SavedModel load for tags { serve }; Status: success: OK. Took 43775 microseconds.
2024-04-09 07:16:45.584171: I tensorflow/compiler/mlir/tensorflow/utils/dump_mlir_util.cc:269] disabling MLIR crash reproducer, set env var `MLIR_CRASH_REPRODUCER_DIRECTORY` to enable.
2024-04-09 07:16:45.635201: I tensorflow/compiler/mlir/lite/flatbuffer_export.cc:2245] Estimated count of arithmetic op

到此大功告成!

这篇关于如何将Paddle(Lite)模型转换为TensorFlow(Lite)模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/889121

相关文章

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Java实现将HTML文件与字符串转换为图片

《Java实现将HTML文件与字符串转换为图片》在Java开发中,我们经常会遇到将HTML内容转换为图片的需求,本文小编就来和大家详细讲讲如何使用FreeSpire.DocforJava库来实现这一功... 目录前言核心实现:html 转图片完整代码场景 1:转换本地 HTML 文件为图片场景 2:转换 H

Python中Json和其他类型相互转换的实现示例

《Python中Json和其他类型相互转换的实现示例》本文介绍了在Python中使用json模块实现json数据与dict、object之间的高效转换,包括loads(),load(),dumps()... 项目中经常会用到json格式转为object对象、dict字典格式等。在此做个记录,方便后续用到该方

使用Java读取本地文件并转换为MultipartFile对象的方法

《使用Java读取本地文件并转换为MultipartFile对象的方法》在许多JavaWeb应用中,我们经常会遇到将本地文件上传至服务器或其他系统的需求,在这种场景下,MultipartFile对象非... 目录1. 基本需求2. 自定义 MultipartFile 类3. 实现代码4. 代码解析5. 自定

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

Kotlin Map映射转换问题小结

《KotlinMap映射转换问题小结》文章介绍了Kotlin集合转换的多种方法,包括map(一对一转换)、mapIndexed(带索引)、mapNotNull(过滤null)、mapKeys/map... 目录Kotlin 集合转换:map、mapIndexed、mapNotNull、mapKeys、map

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到

利用Python脚本实现批量将图片转换为WebP格式

《利用Python脚本实现批量将图片转换为WebP格式》Python语言的简洁语法和库支持使其成为图像处理的理想选择,本文将介绍如何利用Python实现批量将图片转换为WebP格式的脚本,WebP作为... 目录简介1. python在图像处理中的应用2. WebP格式的原理和优势2.1 WebP格式与传统

java Long 与long之间的转换流程

《javaLong与long之间的转换流程》Long类提供了一些方法,用于在long和其他数据类型(如String)之间进行转换,本文将详细介绍如何在Java中实现Long和long之间的转换,感... 目录概述流程步骤1:将long转换为Long对象步骤2:将Longhttp://www.cppcns.c