kinect学习笔记四(距离变换 distance tranform 和opencv像素访问方式)

本文主要是介绍kinect学习笔记四(距离变换 distance tranform 和opencv像素访问方式),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

当时自己理解的一点小误区,放到这里防止再犯错。

距离变换的基本意思就是计算一个图像中非零像素点到最近的零像素点的距离,也就是到所有零像素点的最短距离。建立距离变换图像可以方便提取骨骼

在opencv中有专门的函数cvDistTransform来计算距离变换图像。

DistTransform
计算输入图像的所有非零元素对其最近零元素的距离void cvDistTransform( const CvArr* src, CvArr* dst, int distance_type=CV_DIST_L2,int mask_size=3, const float* mask=NULL );
src
输入 8-比特、单通道 (二值) 图像.
dst
含计算出的距离的输出图像(32-比特、浮点数、单通道).
distance_type
距离类型; 可以是 CV_DIST_L1, CV_DIST_L2, CV_DIST_C 或 CV_DIST_USER.
mask_size
距离变换掩模的大小,可以是 3 或 5. 对 CV_DIST_L1 或 CV_DIST_C 的情况,参数值被强制设定为 3, 因为 3×3 mask 给出 5×5 mask 一样的结果,而且速度还更快。
mask
用户自定义距离距离情况下的 mask。 在 3×3 mask 下它由两个数(水平/垂直位量,对角线位移量)组成, 5×5 mask 下由三个数组成(水平/垂直位移量,对角位移和 国际象棋里的马步(马走日)) 
函数 cvDistTransform 二值图像每一个象素点到它最邻近零象素点的距离。对零象素,函数设置 0 距离,对其它象素,它寻找由基本位移(水平、垂直、对角线或knight's move,最后一项对 5×5 mask 有用)构成的最短路径。 全部的距离被认为是基本距离的和。由于距离函数是对称的,所有水平和垂直位移具有同样的代价 (表示为 a ), 所有的对角位移具有同样的代价 (表示为 b), 所有的 knight's 移动具有同样的代价 (表示为 c). 对类型 CV_DIST_C 和 CV_DIST_L1,距离的计算是精确的,而类型 CV_DIST_L2 (欧式距离) 距离的计算有某些相对误差 (5×5 mask 给出更精确的结果), OpenCV 使用 [Borgefors86] 推荐的值:CV_DIST_C (3×3):
a=1, b=1CV_DIST_L1 (3×3):
a=1, b=2CV_DIST_L2 (3×3):
a=0.955, b=1.3693CV_DIST_L2 (5×5):
a=1, b=1.4, c=2.1969

其中mask刚开始不是很理解,经过模拟数据得到了其含义。

距离计算
2b?2a b
?bab?
2aa0a2a
?bab?
b?a?b

a\b分别表示在水平垂直方向的距离,?/问号部分表示根据a和b的值的大小再确定其值。
如果定义了c值(用户自定义mask或者选择CV_DIST_L2等)在变为

a,b,c
2bc2ac2b
cbabc
2aa0a2a
cbabc
2bc2ac2b

所以定义c的时候必须是5*5的mask,然后在往外扩充的时候类似上面的问号类型,找到最小距离即可。

下面代码表示自己创建一个9*9的矩阵,然后利用该函数计算其值:

//距离变换代码,在微软的那个ppt中用来计算掌心的位置可能用到这个
//部分内容在http://www.opencv.org.cn/forum/viewtopic.php?f=1&t=4574&start=0有解释#include <iostream>
#include "highgui.h"
#include "cv.h"using namespace std;int main()
{IplImage *src = cvCreateImage(cvSize(9, 9), 8, 1);cvZero(src);uchar *ptr = (uchar*)(src->imageData);*ptr++ = 0;*ptr++ = 0;*ptr++ = 0;*ptr++ = 0;*ptr++ = 0;*ptr++ = 0;*ptr++ = 0; *ptr++ = 0;*ptr++ = 0;ptr +=3;*ptr++ = 0;*ptr++ = 255;*ptr++ = 255;*ptr++ = 255;*ptr++ = 255;*ptr++ = 0;*ptr++ = 0; *ptr++ = 0;*ptr++ = 0;ptr +=3;*ptr++ = 0;*ptr++ = 255;*ptr++ = 255;*ptr++ = 255;*ptr++ = 255;*ptr++ = 255;*ptr++ = 255; *ptr++ = 0;*ptr++ = 0;ptr +=3;*ptr++ = 0;*ptr++ = 0;*ptr++ = 255;*ptr++ = 255;*ptr++ = 255;*ptr++ = 255;*ptr++ = 255;*ptr++ = 0;*ptr++ = 0;ptr +=3;*ptr++ = 0;*ptr++ = 255;*ptr++ = 255;*ptr++ = 255;*ptr++ = 255;*ptr++ = 255;*ptr++ = 255;*ptr++ = 255;*ptr++ = 0;ptr +=3;*ptr++ = 0;*ptr++ = 0;*ptr++ = 255;*ptr++ = 255;*ptr++ = 255;*ptr++ = 255;*ptr++ = 255;*ptr++ = 0;*ptr++ = 0;ptr +=3;*ptr++ = 0;*ptr++ = 0;*ptr++ = 255;*ptr++ = 255;*ptr++ = 255;*ptr++ = 255;*ptr++ = 255; *ptr++ = 0;*ptr++ = 0;ptr +=3;*ptr++ = 0;*ptr++ = 0;*ptr++ = 255;*ptr++ = 0;*ptr++ = 255;*ptr++ = 0;*ptr++ = 0;*ptr++ = 0;*ptr++ = 0; ptr +=3;*ptr++ = 0;*ptr++ = 0;*ptr++ = 0;*ptr++ = 0;*ptr++ = 0;*ptr++ = 0;*ptr++ = 0;*ptr++ = 0;*ptr++ = 0;IplImage *dist = cvCreateImage( cvGetSize(src), IPL_DEPTH_32F, 1 );cvDistTransform( src, dist, CV_DIST_L1, 3, NULL, NULL );/*cvConvertScale( dist, dist, 1000.0, 0 );cvShowImage("dist2", dist);cvPow( dist, dist, 0.5 );cvShowImage("dist3", dist);IplImage *dist32s = cvCreateImage(cvGetSize(src), IPL_DEPTH_32S, 1);cvConvertScale( dist, dist32s, 1.0, 0.5 );cvShowImage("dist32s", dist32s);cvAndS( dist32s, cvScalarAll(255), dist32s, 0 );cvShowImage("dist32s2", dist32s);IplImage *dist8u1 = cvCloneImage(src);cvConvertScale( dist32s, dist8u1, 1, 0 );cvShowImage("dist8u1", dist8u1);*/for (int y=0; y<src->height; y++){uchar *pt = (uchar*)(src->imageData+y*src->widthStep);for (int x=0; x<src->width; x++){cout << int(pt[x]) << '\t';}cout << endl;}cout << endl << endl;for (int y=0; y<dist->height; y++){float *p = (float *)(dist->imageData+y*dist->widthStep);//因为输出图像必须是浮点型数据,所以这里必须采用float。也是自己一开始做错的。虽然IplImage->imageData是char型的,但是针对不同类型(字节型浮点型)要有不同的处理方式for (int x=0; x<dist->width; x++){cout << float(p[x]) << '\t';}cout << endl;}cvShowImage("src",src);cvShowImage("dist", dist);cvWaitKey(0);return 0;}
运行结果



如果将距离运算改为CV_DIST_L2运行结果:




因为一开始栽倒数据访问上了,所以有必要将opencv中像素访问方式贴出来,方便以后查阅。csnd编辑界面太差了,一堆乱码,大家还是移步到:http://www.opencv.org.cn/index.php/OpenCV_编程简介(矩阵/图像/视频的基本读写操作)

这篇关于kinect学习笔记四(距离变换 distance tranform 和opencv像素访问方式)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/888132

相关文章

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配

Vue3视频播放组件 vue3-video-play使用方式

《Vue3视频播放组件vue3-video-play使用方式》vue3-video-play是Vue3的视频播放组件,基于原生video标签开发,支持MP4和HLS流,提供全局/局部引入方式,可监听... 目录一、安装二、全局引入三、局部引入四、基本使用五、事件监听六、播放 HLS 流七、更多功能总结在 v

Java发送SNMP至交换机获取交换机状态实现方式

《Java发送SNMP至交换机获取交换机状态实现方式》文章介绍使用SNMP4J库(2.7.0)通过RCF1213-MIB协议获取交换机单/多路状态,需开启SNMP支持,重点对比SNMPv1、v2c、v... 目录交换机协议SNMP库获取交换机单路状态获取交换机多路状态总结交换机协议这里使用的交换机协议为常

k8s admin用户生成token方式

《k8sadmin用户生成token方式》用户使用Kubernetes1.28创建admin命名空间并部署,通过ClusterRoleBinding为jenkins用户授权集群级权限,生成并获取其t... 目录k8s admin用户生成token创建一个admin的命名空间查看k8s namespace 的

uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)

《uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)》在uni-app开发中,文件上传和图片处理是很常见的需求,但也经常会遇到各种问题,下面:本文主要介绍uni-app小程序项目中实... 目录方式一:使用<canvas>实现图片压缩(推荐,兼容性好)示例代码(小程序平台):方式二:使用uni

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

java读取excel文件为base64实现方式

《java读取excel文件为base64实现方式》文章介绍使用ApachePOI和EasyExcel处理Excel文件并转换为Base64的方法,强调EasyExcel适合大文件且内存占用低,需注意... 目录使用 Apache POI 读取 Excel 并转换为 Base64使用 EasyExcel 处

Spring Boot中获取IOC容器的多种方式

《SpringBoot中获取IOC容器的多种方式》本文主要介绍了SpringBoot中获取IOC容器的多种方式,包括直接注入、实现ApplicationContextAware接口、通过Spring... 目录1. 直接注入ApplicationContext2. 实现ApplicationContextA

linux查找java项目日志查找报错信息方式

《linux查找java项目日志查找报错信息方式》日志查找定位步骤:进入项目,用tail-f实时跟踪日志,tail-n1000查看末尾1000行,grep搜索关键词或时间,vim内精准查找并高亮定位,... 目录日志查找定位在当前文件里找到报错消息总结日志查找定位1.cd 进入项目2.正常日志 和错误日