kinect学习笔记四(距离变换 distance tranform 和opencv像素访问方式)

本文主要是介绍kinect学习笔记四(距离变换 distance tranform 和opencv像素访问方式),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

当时自己理解的一点小误区,放到这里防止再犯错。

距离变换的基本意思就是计算一个图像中非零像素点到最近的零像素点的距离,也就是到所有零像素点的最短距离。建立距离变换图像可以方便提取骨骼

在opencv中有专门的函数cvDistTransform来计算距离变换图像。

DistTransform
计算输入图像的所有非零元素对其最近零元素的距离void cvDistTransform( const CvArr* src, CvArr* dst, int distance_type=CV_DIST_L2,int mask_size=3, const float* mask=NULL );
src
输入 8-比特、单通道 (二值) 图像.
dst
含计算出的距离的输出图像(32-比特、浮点数、单通道).
distance_type
距离类型; 可以是 CV_DIST_L1, CV_DIST_L2, CV_DIST_C 或 CV_DIST_USER.
mask_size
距离变换掩模的大小,可以是 3 或 5. 对 CV_DIST_L1 或 CV_DIST_C 的情况,参数值被强制设定为 3, 因为 3×3 mask 给出 5×5 mask 一样的结果,而且速度还更快。
mask
用户自定义距离距离情况下的 mask。 在 3×3 mask 下它由两个数(水平/垂直位量,对角线位移量)组成, 5×5 mask 下由三个数组成(水平/垂直位移量,对角位移和 国际象棋里的马步(马走日)) 
函数 cvDistTransform 二值图像每一个象素点到它最邻近零象素点的距离。对零象素,函数设置 0 距离,对其它象素,它寻找由基本位移(水平、垂直、对角线或knight's move,最后一项对 5×5 mask 有用)构成的最短路径。 全部的距离被认为是基本距离的和。由于距离函数是对称的,所有水平和垂直位移具有同样的代价 (表示为 a ), 所有的对角位移具有同样的代价 (表示为 b), 所有的 knight's 移动具有同样的代价 (表示为 c). 对类型 CV_DIST_C 和 CV_DIST_L1,距离的计算是精确的,而类型 CV_DIST_L2 (欧式距离) 距离的计算有某些相对误差 (5×5 mask 给出更精确的结果), OpenCV 使用 [Borgefors86] 推荐的值:CV_DIST_C (3×3):
a=1, b=1CV_DIST_L1 (3×3):
a=1, b=2CV_DIST_L2 (3×3):
a=0.955, b=1.3693CV_DIST_L2 (5×5):
a=1, b=1.4, c=2.1969

其中mask刚开始不是很理解,经过模拟数据得到了其含义。

距离计算
2b?2a b
?bab?
2aa0a2a
?bab?
b?a?b

a\b分别表示在水平垂直方向的距离,?/问号部分表示根据a和b的值的大小再确定其值。
如果定义了c值(用户自定义mask或者选择CV_DIST_L2等)在变为

a,b,c
2bc2ac2b
cbabc
2aa0a2a
cbabc
2bc2ac2b

所以定义c的时候必须是5*5的mask,然后在往外扩充的时候类似上面的问号类型,找到最小距离即可。

下面代码表示自己创建一个9*9的矩阵,然后利用该函数计算其值:

//距离变换代码,在微软的那个ppt中用来计算掌心的位置可能用到这个
//部分内容在http://www.opencv.org.cn/forum/viewtopic.php?f=1&t=4574&start=0有解释#include <iostream>
#include "highgui.h"
#include "cv.h"using namespace std;int main()
{IplImage *src = cvCreateImage(cvSize(9, 9), 8, 1);cvZero(src);uchar *ptr = (uchar*)(src->imageData);*ptr++ = 0;*ptr++ = 0;*ptr++ = 0;*ptr++ = 0;*ptr++ = 0;*ptr++ = 0;*ptr++ = 0; *ptr++ = 0;*ptr++ = 0;ptr +=3;*ptr++ = 0;*ptr++ = 255;*ptr++ = 255;*ptr++ = 255;*ptr++ = 255;*ptr++ = 0;*ptr++ = 0; *ptr++ = 0;*ptr++ = 0;ptr +=3;*ptr++ = 0;*ptr++ = 255;*ptr++ = 255;*ptr++ = 255;*ptr++ = 255;*ptr++ = 255;*ptr++ = 255; *ptr++ = 0;*ptr++ = 0;ptr +=3;*ptr++ = 0;*ptr++ = 0;*ptr++ = 255;*ptr++ = 255;*ptr++ = 255;*ptr++ = 255;*ptr++ = 255;*ptr++ = 0;*ptr++ = 0;ptr +=3;*ptr++ = 0;*ptr++ = 255;*ptr++ = 255;*ptr++ = 255;*ptr++ = 255;*ptr++ = 255;*ptr++ = 255;*ptr++ = 255;*ptr++ = 0;ptr +=3;*ptr++ = 0;*ptr++ = 0;*ptr++ = 255;*ptr++ = 255;*ptr++ = 255;*ptr++ = 255;*ptr++ = 255;*ptr++ = 0;*ptr++ = 0;ptr +=3;*ptr++ = 0;*ptr++ = 0;*ptr++ = 255;*ptr++ = 255;*ptr++ = 255;*ptr++ = 255;*ptr++ = 255; *ptr++ = 0;*ptr++ = 0;ptr +=3;*ptr++ = 0;*ptr++ = 0;*ptr++ = 255;*ptr++ = 0;*ptr++ = 255;*ptr++ = 0;*ptr++ = 0;*ptr++ = 0;*ptr++ = 0; ptr +=3;*ptr++ = 0;*ptr++ = 0;*ptr++ = 0;*ptr++ = 0;*ptr++ = 0;*ptr++ = 0;*ptr++ = 0;*ptr++ = 0;*ptr++ = 0;IplImage *dist = cvCreateImage( cvGetSize(src), IPL_DEPTH_32F, 1 );cvDistTransform( src, dist, CV_DIST_L1, 3, NULL, NULL );/*cvConvertScale( dist, dist, 1000.0, 0 );cvShowImage("dist2", dist);cvPow( dist, dist, 0.5 );cvShowImage("dist3", dist);IplImage *dist32s = cvCreateImage(cvGetSize(src), IPL_DEPTH_32S, 1);cvConvertScale( dist, dist32s, 1.0, 0.5 );cvShowImage("dist32s", dist32s);cvAndS( dist32s, cvScalarAll(255), dist32s, 0 );cvShowImage("dist32s2", dist32s);IplImage *dist8u1 = cvCloneImage(src);cvConvertScale( dist32s, dist8u1, 1, 0 );cvShowImage("dist8u1", dist8u1);*/for (int y=0; y<src->height; y++){uchar *pt = (uchar*)(src->imageData+y*src->widthStep);for (int x=0; x<src->width; x++){cout << int(pt[x]) << '\t';}cout << endl;}cout << endl << endl;for (int y=0; y<dist->height; y++){float *p = (float *)(dist->imageData+y*dist->widthStep);//因为输出图像必须是浮点型数据,所以这里必须采用float。也是自己一开始做错的。虽然IplImage->imageData是char型的,但是针对不同类型(字节型浮点型)要有不同的处理方式for (int x=0; x<dist->width; x++){cout << float(p[x]) << '\t';}cout << endl;}cvShowImage("src",src);cvShowImage("dist", dist);cvWaitKey(0);return 0;}
运行结果



如果将距离运算改为CV_DIST_L2运行结果:




因为一开始栽倒数据访问上了,所以有必要将opencv中像素访问方式贴出来,方便以后查阅。csnd编辑界面太差了,一堆乱码,大家还是移步到:http://www.opencv.org.cn/index.php/OpenCV_编程简介(矩阵/图像/视频的基本读写操作)

这篇关于kinect学习笔记四(距离变换 distance tranform 和opencv像素访问方式)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/888132

相关文章

Java计算经纬度距离的示例代码

《Java计算经纬度距离的示例代码》在Java中计算两个经纬度之间的距离,可以使用多种方法(代码示例均返回米为单位),文中整理了常用的5种方法,感兴趣的小伙伴可以了解一下... 目录1. Haversine公式(中等精度,推荐通用场景)2. 球面余弦定理(简单但精度较低)3. Vincenty公式(高精度,

CSS引入方式和选择符的讲解和运用小结

《CSS引入方式和选择符的讲解和运用小结》CSS即层叠样式表,是一种用于描述网页文档(如HTML或XML)外观和格式的样式表语言,它主要用于将网页内容的呈现(外观)和结构(内容)分离,从而实现... 目录一、前言二、css 是什么三、CSS 引入方式1、行内样式2、内部样式表3、链入外部样式表四、CSS 选

PyTorch高级特性与性能优化方式

《PyTorch高级特性与性能优化方式》:本文主要介绍PyTorch高级特性与性能优化方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、自动化机制1.自动微分机制2.动态计算图二、性能优化1.内存管理2.GPU加速3.多GPU训练三、分布式训练1.分布式数据

Python文件操作与IO流的使用方式

《Python文件操作与IO流的使用方式》:本文主要介绍Python文件操作与IO流的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、python文件操作基础1. 打开文件2. 关闭文件二、文件读写操作1.www.chinasem.cn 读取文件2. 写

基于Go语言实现Base62编码的三种方式以及对比分析

《基于Go语言实现Base62编码的三种方式以及对比分析》Base62编码是一种在字符编码中使用62个字符的编码方式,在计算机科学中,,Go语言是一种静态类型、编译型语言,它由Google开发并开源,... 目录一、标准库现状与解决方案1. 标准库对比表2. 解决方案完整实现代码(含边界处理)二、关键实现细

python通过curl实现访问deepseek的API

《python通过curl实现访问deepseek的API》这篇文章主要为大家详细介绍了python如何通过curl实现访问deepseek的API,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编... API申请和充值下面是deepeek的API网站https://platform.deepsee

java变量内存中存储的使用方式

《java变量内存中存储的使用方式》:本文主要介绍java变量内存中存储的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍2、变量的定义3、 变量的类型4、 变量的作用域5、 内存中的存储方式总结1、介绍在 Java 中,变量是用于存储程序中数据

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示

C++类和对象之初始化列表的使用方式

《C++类和对象之初始化列表的使用方式》:本文主要介绍C++类和对象之初始化列表的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C++初始化列表详解:性能优化与正确实践什么是初始化列表?初始化列表的三大核心作用1. 性能优化:避免不必要的赋值操作2. 强

Nginx 访问 /root/下 403 Forbidden问题解决

《Nginx访问/root/下403Forbidden问题解决》在使用Nginx作为Web服务器时,可能会遇到403Forbidden错误,文中通过示例代码介绍的非常详细,对大家的学习或者工作... 目录解决 Nginx 访问 /root/test/1.html 403 Forbidden 问题问题复现Ng