万得AI算法工程师一面面试题6道|含解析

2024-04-08 00:44

本文主要是介绍万得AI算法工程师一面面试题6道|含解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

节前,我们星球组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂朋友、参加社招和校招面试的同学,针对算法岗技术趋势、大模型落地项目经验分享、新手如何入门算法岗、该如何准备、面试常考点分享等热门话题进行了深入的讨论。

今天分享一位面试题,喜欢点赞、收藏、关注。文末参与技术讨论。

问题 1、dataloader和dataset的区别

DataLoader 和 Dataset 是 PyTorch 中用于处理数据的两个重要概念:

Dataset 是一个抽象类,用于表示数据集,通常需要用户自定义,包含了数据的读取、预处理等操作。

DataLoader 是一个数据加载器,用于将 Dataset 中的数据按照指定的 batch_size、shuffle 等参数加载到模型中进行训练或推理。DataLoader 可以自动实现多线程数据加载和数据批处理等功能。

问题 2、深度学习中,常见的损失函数有哪些?

均方误差损失函数 (Mean Squared Error, MSE)

交叉熵损失函数 (Cross Entropy Loss)

感知损失函数 (Perceptron Loss)

Hinge Loss

KL 散度损失函数 (Kullback-Leibler Divergence Loss)

Huber Loss

余弦相似度损失函数 (Cosine Similarity Loss) 等。

问题 3、介绍下yolov8算法的模块。

yolov8算法的模块:

Backbone:通常使用一些预训练的卷积神经网络 (CNN),如Darknet、ResNet、EfficientNet 等,用于提取图像的特征。

Neck:用于进一步处理和整合特征,通常包括一些卷积层和池化层等。

Head:目标检测的关键部分,包括预测目标的边界框、类别以及置信度等。

问题 4、介绍下什么是nms

NMS (Non-Maximum Suppression,非极大值抑制) 是目标检测领域常用的一种算法,用于去除检测到的重叠较多的边界框,保留最具代表性的边界框。其核心思想是保留置信度最高的边界框,并去除与其 IoU (Intersection over Union) 超过阈值的其他边界框。

问题 5、CV中数据增强的方法有哪些?

在计算机视觉中,常用的数据增强方法包括:

随机裁剪 (Random Cropping)

随机翻转 (Random Flipping)

随机旋转 (Random Rotation)

色彩变换 (Color Jittering)

尺度缩放 (Scale Augmentation)

平移 (Translation)

对比度增强 (Contrast Enhancement)

亮度调整 (Brightness Adjustment)

添加噪声 (Adding Noise) 等。

问题6、讲一下batchnorm的计算过程。****

1)对于每个批次的输入数据,计算其均值和方差。

2)对输入数据进行标准化,即减去均值并除以标准差。

3)使用学习参数(拉伸因子和偏移量)进行线性变换,使得数据重新具有适当的比例和偏移。

BatchNorm 可以在训练过程中通过批次数据的统计信息来进行标准化,也可以在推理过程中使用移动平均来估计整个数据集的统计信息,以实现更好的泛化能力和稳定性。

技术交流

前沿技术资讯、算法交流、求职内推、算法竞赛、面试交流(校招、社招、实习)等、与 10000+来自港科大、北大、清华、中科院、CMU、腾讯、百度等名校名企开发者互动交流~

我们建了算法岗面试与技术交流群, 想要进交流群、需要源码&资料、提升技术的同学,可以直接加微信号:mlc2040。加的时候备注一下:研究方向 +学校/公司+CSDN,即可。然后就可以拉你进群了。

方式①、微信搜索公众号:机器学习社区,后台回复:技术交流
方式②、添加微信号:mlc2040,备注:技术交流+CSDN

用通俗易懂的方式讲解系列

  • 重磅来袭!《大模型面试宝典》(2024版) 发布!

  • 重磅来袭!《大模型实战宝典》(2024版) 发布!

  • 用通俗易懂的方式讲解:不用再找了,这是大模型最全的面试题库

  • 用通俗易懂的方式讲解:这是我见过的最适合大模型小白的 PyTorch 中文课程

  • 用通俗易懂的方式讲解:一文讲透最热的大模型开发框架 LangChain

  • 用通俗易懂的方式讲解:基于 LangChain + ChatGLM搭建知识本地库

  • 用通俗易懂的方式讲解:基于大模型的知识问答系统全面总结

  • 用通俗易懂的方式讲解:ChatGLM3 基础模型多轮对话微调

  • 用通俗易懂的方式讲解:最火的大模型训练框架 DeepSpeed 详解来了

  • 用通俗易懂的方式讲解:这应该是最全的大模型训练与微调关键技术梳理

  • 用通俗易懂的方式讲解:Stable Diffusion 微调及推理优化实践指南

  • 用通俗易懂的方式讲解:大模型训练过程概述

  • 用通俗易懂的方式讲解:专补大模型短板的RAG

  • 用通俗易懂的方式讲解:大模型LLM Agent在 Text2SQL 应用上的实践

  • 用通俗易懂的方式讲解:大模型 LLM RAG在 Text2SQL 上的应用实践

  • 用通俗易懂的方式讲解:大模型微调方法总结

  • 用通俗易懂的方式讲解:涨知识了,这篇大模型 LangChain 框架与使用示例太棒了

  • 用通俗易懂的方式讲解:掌握大模型这些优化技术,优雅地进行大模型的训练和推理!

  • 用通俗易懂的方式讲解:九大最热门的开源大模型 Agent 框架来了

这篇关于万得AI算法工程师一面面试题6道|含解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/884122

相关文章

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security

全面解析Golang 中的 Gorilla CORS 中间件正确用法

《全面解析Golang中的GorillaCORS中间件正确用法》Golang中使用gorilla/mux路由器配合rs/cors中间件库可以优雅地解决这个问题,然而,很多人刚开始使用时会遇到配... 目录如何让 golang 中的 Gorilla CORS 中间件正确工作一、基础依赖二、错误用法(很多人一开

Mysql中设计数据表的过程解析

《Mysql中设计数据表的过程解析》数据库约束通过NOTNULL、UNIQUE、DEFAULT、主键和外键等规则保障数据完整性,自动校验数据,减少人工错误,提升数据一致性和业务逻辑严谨性,本文介绍My... 目录1.引言2.NOT NULL——制定某列不可以存储NULL值2.UNIQUE——保证某一列的每一

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

MySQL CTE (Common Table Expressions)示例全解析

《MySQLCTE(CommonTableExpressions)示例全解析》MySQL8.0引入CTE,支持递归查询,可创建临时命名结果集,提升复杂查询的可读性与维护性,适用于层次结构数据处... 目录基本语法CTE 主要特点非递归 CTE简单 CTE 示例多 CTE 示例递归 CTE基本递归 CTE 结

Spring AI使用tool Calling和MCP的示例详解

《SpringAI使用toolCalling和MCP的示例详解》SpringAI1.0.0.M6引入ToolCalling与MCP协议,提升AI与工具交互的扩展性与标准化,支持信息检索、行动执行等... 目录深入探索 Spring AI聊天接口示例Function CallingMCPSTDIOSSE结束语

Spring Boot 3.x 中 WebClient 示例详解析

《SpringBoot3.x中WebClient示例详解析》SpringBoot3.x中WebClient是响应式HTTP客户端,替代RestTemplate,支持异步非阻塞请求,涵盖GET... 目录Spring Boot 3.x 中 WebClient 全面详解及示例1. WebClient 简介2.

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

Spring Boot3.0新特性全面解析与应用实战

《SpringBoot3.0新特性全面解析与应用实战》SpringBoot3.0作为Spring生态系统的一个重要里程碑,带来了众多令人兴奋的新特性和改进,本文将深入解析SpringBoot3.0的... 目录核心变化概览Java版本要求提升迁移至Jakarta EE重要新特性详解1. Native Ima