语义分割离线数据增强——Albumentations实现

2024-04-07 16:28

本文主要是介绍语义分割离线数据增强——Albumentations实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

该脚本实现了一个图像及其对应掩模的离线数据增强流程,旨在通过引入多种变换增强图像多样性,以提高深度学习模型的泛化能力。主要技术要点如下:

1.使用 Albumentations 库进行数据增强

:Albumentations 是一个强大的 Python 库,专门用于图像预处理和数据增强。它提供了丰富的图像变换操作,支持多种深度学习框架。在本脚本中,通过定义 A.Compose 对象 aug 集成了多种增强操作。

2.定义增强配置:

A.HorizontalFlip(p=0.8) 和 A.VerticalFlip(p=0.7):分别以 80% 和 70% 的概率水平翻转和垂直翻转图像及掩模,增加图像的方向性变化。
A.Resize(height=512, width=512, interpolation=cv.INTER_CUBIC, always_apply=False, p=1):始终将图像和掩模统一缩放到 512x512 大小,使用三次插值法保持图像质量。
A.ShiftScaleRotate(shift_limit=0.0625, scale_limit=0.2, rotate_limit=15, p=0.8):以 80% 的概率对图像和掩模进行随机平移(最大移动图像尺寸的 1/16)、缩放(最大放大20%或缩小至80%)和旋转(最大±15度),模拟真实世界中的视角变化和物体位置、大小的差异。
A.Transpose(always_apply=False, p=1):始终对图像和掩模进行转置(水平与垂直方向交换),增加图像的空间布局变化。
A.GridDistortion(num_steps=10, distort_limit=0.3, border_mode=cv.BORDER_CONSTANT, always_apply=False, p=1):始终对图像和掩模应用网格失真变形,模拟镜头畸变或物体表面不规则情况。

3.数据集准备与目录结构:

image_dir、mask_dir 存储原始图像和掩模文件,分别对应图像和其对应的彩色掩模。
aug_image_dir、aug_mask_dir 分别为增强后图像和掩模的输出目录,确保其存在并创建(若不存在)。

4.遍历图像与掩模文件:

从 image_dir 和 mask_dir 中获取相同数量的图像和掩模文件列表,确保二者一一对应。
使用 zip 函数同时遍历 image_files 和 mask_files,对每一对图像和掩模进行后续处理。

5.生成增强版本:

读取指定路径下的原始图像和彩色掩模。
对每对图像-掩模组合应用增强配置 aug 进行100次随机增强。
从增强结果中提取增强后的图像 image_aug 和掩模 mask_aug。

6.保存增强结果:

构建增强后图像和掩模的新文件名,格式为原始文件名(去除扩展名)+ 序号(0~99)+ 扩展名(.jpg 或 .png)。将增强后的图像和掩模保存到对应的输出目录 aug_image_dir 和 aug_mask_dir。

总之,此脚本利用 Albumentations 库对给定图像及其彩色掩模进行一系列几何变换和像素级失真操作,生成大量增强后的图像-掩模对,旨在提升模型训练时的数据多样性,进而增强模型的泛化能力。每个原始图像-掩模对将产生100个不同的增强版本,增强了数据集的规模和复杂性。

import os
import cv2 as cv
import albumentations as A# 定义增强配置
aug = A.Compose([A.HorizontalFlip(p=0.8),A.VerticalFlip(p=0.7),A.Resize(height=512, width=512, interpolation=cv.INTER_CUBIC, always_apply=False, p=1),A.ShiftScaleRotate(shift_limit=0.0625, scale_limit=0.2, rotate_limit=15, p=0.8),A.Transpose(always_apply=False, p=1),A.GridDistortion(num_steps=10, distort_limit=0.3, border_mode=cv.BORDER_CONSTANT, always_apply=False, p=1),
])# load dataset
image_dir = './dataset/image'
mask_dir = './dataset/mask'
aug_image_dir = './aug/image'
aug_mask_dir = './aug/mask'# 确保输出目录存在
os.makedirs(aug_image_dir, exist_ok=True)
os.makedirs(aug_mask_dir, exist_ok=True)# 获取图像和掩模文件列表
image_files = [f for f in os.listdir(image_dir) if f.endswith('.jpg') or f.endswith('.png')]
mask_files = [f for f in os.listdir(mask_dir) if f.endswith('.jpg') or f.endswith('.png')]assert len(image_files) == len(mask_files), "Number of images and masks don't match"for image_file, mask_file in zip(image_files, mask_files):# 读取原始图像和掩模image_path = os.path.join(image_dir, image_file)mask_path = os.path.join(mask_dir, mask_file)image = cv.imread(image_path)mask = cv.imread(mask_path, cv.IMREAD_COLOR)  # 读取彩色掩模# 为当前图像和掩模生成多个增强版本(共100个)for i in range(100):augmented = aug(image=image, mask=mask)image_aug = augmented["image"]mask_aug = augmented["mask"]# 为增强结果构建新的文件名output_image_name = f'{image_file[:-4]}_{i}.jpg'  # 假设原始图像为 .jpg 格式output_mask_name = f'{mask_file[:-4]}_{i}.png'  # 假设原始掩模为 .png 格式# 保存增强后的图像和掩模output_image_path = os.path.join(aug_image_dir, output_image_name)output_mask_path = os.path.join(aug_mask_dir, output_mask_name)cv.imwrite(output_image_path, image_aug)cv.imwrite(output_mask_path, mask_aug)

这篇关于语义分割离线数据增强——Albumentations实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/883087

相关文章

Python实现终端清屏的几种方式详解

《Python实现终端清屏的几种方式详解》在使用Python进行终端交互式编程时,我们经常需要清空当前终端屏幕的内容,本文为大家整理了几种常见的实现方法,有需要的小伙伴可以参考下... 目录方法一:使用 `os` 模块调用系统命令方法二:使用 `subprocess` 模块执行命令方法三:打印多个换行符模拟

SpringBoot+EasyPOI轻松实现Excel和Word导出PDF

《SpringBoot+EasyPOI轻松实现Excel和Word导出PDF》在企业级开发中,将Excel和Word文档导出为PDF是常见需求,本文将结合​​EasyPOI和​​Aspose系列工具实... 目录一、环境准备与依赖配置1.1 方案选型1.2 依赖配置(商业库方案)二、Excel 导出 PDF

Python实现MQTT通信的示例代码

《Python实现MQTT通信的示例代码》本文主要介绍了Python实现MQTT通信的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 安装paho-mqtt库‌2. 搭建MQTT代理服务器(Broker)‌‌3. pytho

使用zip4j实现Java中的ZIP文件加密压缩的操作方法

《使用zip4j实现Java中的ZIP文件加密压缩的操作方法》本文介绍如何通过Maven集成zip4j1.3.2库创建带密码保护的ZIP文件,涵盖依赖配置、代码示例及加密原理,确保数据安全性,感兴趣的... 目录1. zip4j库介绍和版本1.1 zip4j库概述1.2 zip4j的版本演变1.3 zip4

python生成随机唯一id的几种实现方法

《python生成随机唯一id的几种实现方法》在Python中生成随机唯一ID有多种方法,根据不同的需求场景可以选择最适合的方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习... 目录方法 1:使用 UUID 模块(推荐)方法 2:使用 Secrets 模块(安全敏感场景)方法

MyBatis-Plus通用中等、大量数据分批查询和处理方法

《MyBatis-Plus通用中等、大量数据分批查询和处理方法》文章介绍MyBatis-Plus分页查询处理,通过函数式接口与Lambda表达式实现通用逻辑,方法抽象但功能强大,建议扩展分批处理及流式... 目录函数式接口获取分页数据接口数据处理接口通用逻辑工具类使用方法简单查询自定义查询方法总结函数式接口

Spring StateMachine实现状态机使用示例详解

《SpringStateMachine实现状态机使用示例详解》本文介绍SpringStateMachine实现状态机的步骤,包括依赖导入、枚举定义、状态转移规则配置、上下文管理及服务调用示例,重点解... 目录什么是状态机使用示例什么是状态机状态机是计算机科学中的​​核心建模工具​​,用于描述对象在其生命

Spring Boot 结合 WxJava 实现文章上传微信公众号草稿箱与群发

《SpringBoot结合WxJava实现文章上传微信公众号草稿箱与群发》本文将详细介绍如何使用SpringBoot框架结合WxJava开发工具包,实现文章上传到微信公众号草稿箱以及群发功能,... 目录一、项目环境准备1.1 开发环境1.2 微信公众号准备二、Spring Boot 项目搭建2.1 创建

IntelliJ IDEA2025创建SpringBoot项目的实现步骤

《IntelliJIDEA2025创建SpringBoot项目的实现步骤》本文主要介绍了IntelliJIDEA2025创建SpringBoot项目的实现步骤,文中通过示例代码介绍的非常详细,对大家... 目录一、创建 Spring Boot 项目1. 新建项目2. 基础配置3. 选择依赖4. 生成项目5.

Linux下删除乱码文件和目录的实现方式

《Linux下删除乱码文件和目录的实现方式》:本文主要介绍Linux下删除乱码文件和目录的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下删除乱码文件和目录方法1方法2总结Linux下删除乱码文件和目录方法1使用ls -i命令找到文件或目录