Ubuntu20.04配置Kinect 2.0驱动安装和ROS环境下配置以及录制bag包和制作ORB-SLAM数据集

本文主要是介绍Ubuntu20.04配置Kinect 2.0驱动安装和ROS环境下配置以及录制bag包和制作ORB-SLAM数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 安装libfreenect2

1.1 下载官方文件

git clone https://github.com/OpenKinect/libfreenect2.git
cd libfreenect2

1.2 安装build工具

sudo apt-get install build-essential cmake pkg-config

1.3 安装libusb

sudo apt-get install libusb-1.0-0-dev

1.4 安装urboJPEG

sudo apt-get install libturbojpeg0-dev

1.5 安装OpenGL

sudo apt-get install libglfw3-dev

1.6 安装OpenCL

sudo apt-get install beignet-dev

1.7 安装OpenNI

sudo apt-get install libopenni2-dev

1.8 进入libfreenect2 文件夹,编译安装

cd libfreenect2
mkdir build && cd build
cmake .. -DENABLE_CXX11=ON -DCMAKE_INSTALL_PREFIX=$HOME/freenect2 
make
make install

注:在对libfreenect2进行make时报错:

fatal error: helper_math.h: No such file or directory

错误原因:
11.6版本之前的CUDA安装时会附带安装CUDA Samples,helper_math.h文件在/xxxx/NVIDIA_CUDA-10.1_Samples/common/inc/helper_math.h位置;11.6版本之后不再附带Samples,从而找不到该文件。

解决方法:

手动下载Samples
1.1. 从github下载Samples库,选择与那cuda同版本的sample库
https://github.com/NVIDIA/cuda-samples
在这里插入图片描述

1.2. 在cmake之前添加相应路径到CPATH

cd <sample_dir>
make

1.3 将help_math.h复制到那报错的路径下

cp /home/kunyuwan/cuda-samples/Common/helper_math.h [Where the error occurs]

1.9 设定udev rules

sudo cp /home/kunyuwan/libfreenect2/platform/linux/udev/90-kinect2.rules /etc/udev/rules.d/

1.10 测试

./bin/Protonect

不出意外,看到以下界面
在这里插入图片描述

2. 配置ROS环境

2.1 下载iai_kinect2包并安装

cd ~/catkin_ws/src/
git clone https://github.com/code-iai/iai_kinect2.git
cd iai_kinect2
rosdep install -r --from-paths .
cd ~/catkin_ws
catkin_make -DCMAKE_BUILD_TYPE="Release"

2.2 相机上电,测试

打开一个新的终端测试话题订阅

cd ~/catkin_ws
source devel/setup.bash
roslaunch kinect2_bridge kinect2_bridge.launch

打开一个新的终端查看实时画面。

rqt

输入rostopic list可以查看订阅的对应话题
此时再打开一个新的终端,运行以下命令:

cd ~/catkin_ws
source devel/setup.bash
rosrun kinect2_viewer kinect2_viewer kinect2 sd cloud

显示点云相机窗口,则代表启动成功!!!

3 录制bag包和制作ORB-SLAM2数据集

3.1 启动roscore,并启动相机

打开两个终端,分别执行以下命令

roscore
cd ~/catkin_ws
source devel/setup.bash
roslaunch kinect2_bridge kinect2_bridge.launch

3.2 录制

在打开一个终端

rosbag record  -o xxx.bag /kinect2/qhd/image_color_rect /kinect2/qhd/image_depth_rect

3.3 提取录制的rosbag包内的rgb和depth

注意修改路径和订阅的话题!!!

# coding:utf-8
#!/usr/bin/python# Extract images from a bag file.#PKG = 'beginner_tutorials'
import roslib;   #roslib.load_manifest(PKG)
import rosbag
import rospy
import cv2
from sensor_msgs.msg import Image
from cv_bridge import CvBridge
from cv_bridge import CvBridgeError# Reading bag filename from command line or roslaunch parameter.
#import os
#import sysrgb_path = '/home/kunyuwan/test_kinectv2_3/rgb/'    # 已经建立好的存储rgb彩色图文件的目录(最好改成绝对路径)
depth_path= '/home/kunyuwan/test_kinectv2_3/depth/' # 已经建立好的存储深度图文件的目录(最好改成绝对路径)class ImageCreator():def __init__(self):self.bridge = CvBridge()with rosbag.Bag('/home/kunyuwan/test_kinectv2_3/4_2024-04-03-21-40-12.bag', 'r') as bag:  #要读取的bag文件(最好改成绝对路径);for topic,msg,t in bag.read_messages(): if topic == "/kinect2/qhd/image_color_rect": #图像的topic 注意不要错了;try:cv_image = self.bridge.imgmsg_to_cv2(msg,"bgr8")except CvBridgeError as e:print(e)timestr = "%.6f" %  msg.header.stamp.to_sec()#%.6f表示小数点后带有6位,可根据精确度需要修改;image_name = timestr+ ".png" #图像命名:时间戳.pngcv2.imwrite(rgb_path + image_name, cv_image)  #保存;elif topic == "/kinect2/qhd/image_depth_rect": #图像的topic;try:cv_image = self.bridge.imgmsg_to_cv2(msg,"16UC1")except CvBridgeError as e:print(e)timestr = "%.6f" %  msg.header.stamp.to_sec()#%.6f表示小数点后带有6位,可根据精确度需要修改;image_name = timestr+ ".png" #图像命名:时间戳.pngcv2.imwrite(depth_path + image_name, cv_image)  #保存;if __name__ == '__main__':#rospy.init_node(PKG)try:image_creator = ImageCreator()except rospy.ROSInterruptException:pass

3.4. 生成rgb.txt和depth.txt

#include <iostream>
#include <fmt/os.h>
#include <fmt/core.h>
#include <fmt/format.h>
#include <string>
#include <vector>
#include <algorithm>
extern "C"
{
#include <sys/types.h>
#include <sys/dir.h>
#include <dirent.h>
}
using namespace std;void getNamesToText(const char *filepath,const char *filetype)
{DIR *streamp = nullptr;dirent *dep = nullptr;string filename(filepath);auto out = fmt::output_file("./"+string(filetype));vector<string> names;streamp = opendir(filepath);errno = 0;while ((dep = readdir(streamp)) != NULL){if ((dep->d_name == ".") || (dep->d_name == "..")){continue;}names.push_back(dep->d_name);}if (errno != 0){fmt::print("error");}closedir(streamp);for (vector<string>::iterator ite = names.begin(); ite != names.end();){if ((*ite == ".") || (*ite == "..")){ite = names.erase(ite); }else{++ite;}}sort(names.begin(), names.end());for (auto &item : names){auto pos = item.find_last_of('.');string filenum;for (int i = 0; i < pos; i++){filenum += item[i];}if(strcmp(filetype,"rgb.txt")==0){out.print("{} rgb/{}\n",filenum,item);}else if(strcmp(filetype,"depth.txt")==0){out.print("{} depth/{}\n",filenum,item);}}fmt::print("{} finished\n",filetype);
}int main(int argc, char *argv[])
{if(argc<3){fmt::print("Usage: [executable] [rgb/depth path] [type]");return 0;}const char *filepath =argv[1];const char *filetype =argv[2];getNamesToText(filepath,filetype);return 0;
}

注意安装fmt

git clone  https://github.com/fmtlib/fmt.git
cd fmt
mkdir build
cd build
cmake ..
make
sudo make install

运行命令

g++ 文件名.cpp -lfmt
./a.out rgb rgb.txt # 文件夹路径和生成文件路径
./a.out depth depth.txt # 文件夹路径和生成文件路径

3.5 associate.py将rgb.txt和depth.txt进行匹配

#!/usr/bin/python
# Software License Agreement (BSD License)
#
# Copyright (c) 2013, Juergen Sturm, TUM
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
#  * Redistributions of source code must retain the above copyright
#    notice, this list of conditions and the following disclaimer.
#  * Redistributions in binary form must reproduce the above
#    copyright notice, this list of conditions and the following
#    disclaimer in the documentation and/or other materials provided
#    with the distribution.
#  * Neither the name of TUM nor the names of its
#    contributors may be used to endorse or promote products derived
#    from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
# Requirements: 
# sudo apt-get install python-argparse"""
The Kinect provides the color and depth images in an un-synchronized way. This means that the set of time stamps from the color images do not intersect with those of the depth images. Therefore, we need some way of associating color images to depth images.For this purpose, you can use the ''associate.py'' script. It reads the time stamps from the rgb.txt file and the depth.txt file, and joins them by finding the best matches.
"""import argparse
import sys
import os
import numpydef read_file_list(filename):"""Reads a trajectory from a text file. File format:The file format is "stamp d1 d2 d3 ...", where stamp denotes the time stamp (to be matched)and "d1 d2 d3.." is arbitary data (e.g., a 3D position and 3D orientation) associated to this timestamp. Input:filename -- File nameOutput:dict -- dictionary of (stamp,data) tuples"""file = open(filename)data = file.read()lines = data.replace(","," ").replace("\t"," ").split("\n") list = [[v.strip() for v in line.split(" ") if v.strip()!=""] for line in lines if len(line)>0 and line[0]!="#"]list = [(float(l[0]),l[1:]) for l in list if len(l)>1]return dict(list)def associate(first_list, second_list,offset,max_difference):"""Associate two dictionaries of (stamp,data). As the time stamps never match exactly, we aim to find the closest match for every input tuple.Input:first_list -- first dictionary of (stamp,data) tuplessecond_list -- second dictionary of (stamp,data) tuplesoffset -- time offset between both dictionaries (e.g., to model the delay between the sensors)max_difference -- search radius for candidate generationOutput:matches -- list of matched tuples ((stamp1,data1),(stamp2,data2))"""first_keys = list(first_list)second_keys = list(second_list)potential_matches = [(abs(a - (b + offset)), a, b) for a in first_keys for b in second_keys if abs(a - (b + offset)) < max_difference]potential_matches.sort()matches = []for diff, a, b in potential_matches:if a in first_keys and b in second_keys:first_keys.remove(a)second_keys.remove(b)matches.append((a, b))matches.sort()return matchesif __name__ == '__main__':# parse command lineparser = argparse.ArgumentParser(description='''This script takes two data files with timestamps and associates them   ''')parser.add_argument('first_file', help='first text file (format: timestamp data)')parser.add_argument('second_file', help='second text file (format: timestamp data)')parser.add_argument('--first_only', help='only output associated lines from first file', action='store_true')parser.add_argument('--offset', help='time offset added to the timestamps of the second file (default: 0.0)',default=0.0)parser.add_argument('--max_difference', help='maximally allowed time difference for matching entries (default: 0.02)',default=0.02)args = parser.parse_args()first_list = read_file_list(args.first_file)second_list = read_file_list(args.second_file)matches = associate(first_list, second_list,float(args.offset),float(args.max_difference))    if args.first_only:for a,b in matches:print("%f %s"%(a," ".join(first_list[a])))else:for a,b in matches:print("%f %s %f %s"%(a," ".join(first_list[a]),b-float(args.offset)," ".join(second_list[b])))

运行指令

chmod 777 associate.py
./associate.py rgb.txt depth.txt > associate.txt

最终得到的文件夹内部的结构如图即可:
在这里插入图片描述

这篇关于Ubuntu20.04配置Kinect 2.0驱动安装和ROS环境下配置以及录制bag包和制作ORB-SLAM数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/881237

相关文章

QT Creator配置Kit的实现示例

《QTCreator配置Kit的实现示例》本文主要介绍了使用Qt5.12.12与VS2022时,因MSVC编译器版本不匹配及WindowsSDK缺失导致配置错误的问题解决,感兴趣的可以了解一下... 目录0、背景:qt5.12.12+vs2022一、症状:二、原因:(可以跳过,直奔后面的解决方法)三、解决方

SpringBoot路径映射配置的实现步骤

《SpringBoot路径映射配置的实现步骤》本文介绍了如何在SpringBoot项目中配置路径映射,使得除static目录外的资源可被访问,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一... 目录SpringBoot路径映射补:springboot 配置虚拟路径映射 @RequestMapp

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

RabbitMQ 延时队列插件安装与使用示例详解(基于 Delayed Message Plugin)

《RabbitMQ延时队列插件安装与使用示例详解(基于DelayedMessagePlugin)》本文详解RabbitMQ通过安装rabbitmq_delayed_message_exchan... 目录 一、什么是 RabbitMQ 延时队列? 二、安装前准备✅ RabbitMQ 环境要求 三、安装延时队

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

linux系统上安装JDK8全过程

《linux系统上安装JDK8全过程》文章介绍安装JDK的必要性及Linux下JDK8的安装步骤,包括卸载旧版本、下载解压、配置环境变量等,强调开发需JDK,运行可选JRE,现JDK已集成JRE... 目录为什么要安装jdk?1.查看linux系统是否有自带的jdk:2.下载jdk压缩包2.解压3.配置环境

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

Nginx中配置使用非默认80端口进行服务的完整指南

《Nginx中配置使用非默认80端口进行服务的完整指南》在实际生产环境中,我们经常需要将Nginx配置在其他端口上运行,本文将详细介绍如何在Nginx中配置使用非默认端口进行服务,希望对大家有所帮助... 目录一、为什么需要使用非默认端口二、配置Nginx使用非默认端口的基本方法2.1 修改listen指令

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I