电商API接口|Python爬虫 | 如何用Python爬虫一天内收集数百万条电商数据?

2024-04-06 20:28

本文主要是介绍电商API接口|Python爬虫 | 如何用Python爬虫一天内收集数百万条电商数据?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

你是否遇到过需要收集大量数据的问题?比如需要分析市场趋势,或者是想要了解某个领域的发展动态。手动收集这些数据既费时又费力,而且很难保证数据的准确性和完整性。那么有没有一种方法可以快速高效地收集大量数据呢?

技术汇总

通过以下方法,我们可以快速高效地收集大量数据。当然,爬虫程序也需要注意一些问题,比如遵守网站的爬虫规则、防止IP被封禁等。除此之外,我们还可以对爬取到的数据进行清洗、分析和可视化,从而获得更有价值的信息。

Python爬虫是一项强大而又实用的技术,它可以帮助我们快速获取大量数据,提高工作效率。如果你不懂技术,有需要大量的电商数据,您需要接入封装好的电商API数据采集接口。

 

图片

Python拥有丰富的第三方库和工具,其中最为流行的就是爬虫库。本文将介绍如何使用Python爬虫一天内收集数百万条数据。

确定数据来源

在进行数据收集之前,首先需要确定数据来源。数据来源可以是网站、API、数据库等。本文以网站为例进行讲解。

假设我们需要收集某个电商网站的商品信息,包括商品名称、价格、销量、评价等信息。首先需要确定该网站的网址和页面结构。通过查看网页源代码,可以发现该网站的商品信息存储在HTML标签中,而且每个商品都有独立的URL。因此,我们可以通过解析HTML标签和URL链接来收集商品信息。

编写基础爬虫程序

在确定数据来源之后,就可以开始编写爬虫程序了。爬虫程序主要包括以下几个步骤:

  1. 发送HTTP请求:使用Python的requests库发送HTTP请求,获取网页源代码。

import requestsurl = 'https://www.example.com'
response = requests.get(url)
html = response.text
  1. 解析HTML标签:使用Python的BeautifulSoup库解析HTML标签,提取所需信息。需要根据实际返回的内容结构分析修改。

from bs4 import BeautifulSoupsoup = BeautifulSoup(html, 'html.parser')
items = soup.find_all('div', class_='item')
for item in items:name = item.find('a', class_='name').textprice = item.find('span', class_='price').textsales = item.find('span', class_='sales').textrating = item.find('span', class_='rating').text# 将数据存储到数据库或文件中
  1. 遍历URL链接:使用Python的urllib库遍历URL链接,爬取所有商品信息。

import urllib.parsebase_url = 'https://www.example.com/list?page='
for page in range(1, 101):url = base_url + str(page)response = requests.get(url)html = response.textsoup = BeautifulSoup(html, 'html.parser')items = soup.find_all('div', class_='item')for item in items:name = item.find('a', class_='name').textprice = item.find('span', class_='price').textsales = item.find('span', class_='sales').textrating = item.find('span', class_='rating').text# 将数据存储到数据库或文件中
  1. 存储数据:使用Python的csv库将数据存储到CSV文件中。

import csvwith open('data.csv', 'w', newline='', encoding='utf-8') as csvfile:writer = csv.writer(csvfile)writer.writerow(['name', 'price', 'sales', 'rating'])for item in items:name = item.find('a', class_='name').textprice = item.find('span', class_='price').textsales = item.find('span', class_='sales').textrating = item.find('span', class_='rating').textwriter.writerow([name, price, sales, rating])

提高爬虫效率

当需要收集数百万条数据时,单个爬虫程序可能无法满足要求。为了提高爬虫效率,可以采用以下方法:

  1. 单机多线程:使用多线程可以同时处理多个请求,提高爬虫的效率。Python的threading库可以实现多线程。

import threadingdef crawl(url):response = requests.get(url)html = response.textsoup = BeautifulSoup(html, 'html.parser')items = soup.find_all('div', class_='item')for item in items:name = item.find('a', class_='name').textprice = item.find('span', class_='price').textsales = item.find('span', class_='sales').textrating = item.find('span', class_='rating').text# 将数据存储到数据库或文件中threads = []
for page in range(1, 101):url = base_url + str(page)t = threading.Thread(target=crawl, args=(url,))threads.append(t)t.start()for t in threads:t.join()
  1. 分布式爬虫:使用多个爬虫程序同时爬取不同的网页,提高爬虫的效率。Python的Scrapy框架可以实现分布式爬虫。

可以通过以下步骤进行配置:

  1. 安装分布式框架:Scrapy-Redis 或 Scrapy-RabbitMQ。

  2. 配置 Scrapy-Redis 或 Scrapy-RabbitMQ连接信息(如Redis的地址、端口、密码等)。

  3. 修改 Scrapy 的配置文件 settings.py,添加如下配置:

DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter"
SCHEDULER = "scrapy_redis.scheduler.Scheduler"
SCHEDULER_PERSIST = True
SCHEDULER_QUEUE_CLASS = "scrapy_redis.queue.SpiderPriorityQueue"REDIS_HOST = 'your_redis_host'
REDIS_PORT = 'your_redis_port'
REDIS_PASSWORD = 'your_redis_password'
  1. 在 spider 中添加 Redis 或 RabbitMQ 的 URL,实现任务的分发。

  2. 启动 Redis 或 RabbitMQ 服务。

  3. 启动多个爬虫节点,使用以下命令启动:

scrapy crawl spider_name -s JOBDIR=crawls/spider_name-1

其中 spider_name 是你的爬虫名称,-s JOBDIR=crawls/spider_name-1 是启用断点续爬的命令。

  1. 在另一个终端中,使用以下命令启动调度程序:

scrapy-redis-cli queue spider_name:start_urls

其中,spider_name:start_urls 是你爬虫中定义的起始 URL 名称。

到这里 Scrapy 分布式爬虫就配置完成了。

下面使用 Scrapy 实现分布式爬虫:

  1. 创建一个 Scrapy 项目,按照上面的配置进行设置。

  2. 在爬虫的 spider 中,定义待爬取的 URL 队列:

import scrapy
from scrapy_redis.spiders import RedisSpiderclass MySpider(RedisSpider):name = 'myspider'redis_key = 'myspider:start_urls'def parse(self, response):items = response.xpath('//div[@class="item"]')for item in items:name = item.xpath('.//a[@class="name"]/text()').get()price = item.xpath('.//span[@class="price"]/text()').get()sales = item.xpath('.//span[@class="sales"]/text()').get()rating = item.xpath('.//span[@class="rating"]/text()').get()yield {'name': name, 'price': price, 'sales': sales, 'rating': rating}

这里继承了 RedisSpider,并将 redis_key 设置为 myspider:start_urls,表示将从 Redis 中获取起始 URL。定义了 parse 方法,使用 XPath 提取需要的信息,并使用 yield 返回字典类型的数据。

parse 函数是 Scrapy 爬虫中的一个方法名,用于解析爬取到的网页内容,并提取需要的数据。

  1. 启动 Redis 服务,并将待爬取的 URL 加入队列中:

import redisredis_conn = redis.Redis(host='localhost', port=6379, db=0)# 将待爬取的 URL 加入队列
for page in range(1, 101):url = 'https://www.example.com/list?page=' + str(page)redis_conn.lpush('myspider:start_urls', url)

这里使用了 Redis 的 Python 客户端库 redis,并将起始 URL 加入到 myspider:start_urls 队列中。

  1. 在 settings.py 中,添加存储数据的配置:

FEED_FORMAT = 'csv'
FEED_URI = 'data.csv'
FEED_EXPORT_ENCODING = 'utf-8'

这里使用了 Scrapy 自带的 CSV 输出器,并将数据存储到 data.csv 文件中。

  1. 启动多个爬虫节点:

scrapy crawl myspider -s JOBDIR=crawls/myspider-1
scrapy crawl myspider -s JOBDIR=crawls/myspider-2

这里启动了两个爬虫节点,分别使用了 -s JOBDIR=crawls/myspider-1 和 -s JOBDIR=crawls/myspider-2 参数,表示启用断点续爬的功能。

  1. 运行爬虫程序,开始爬取:

scrapy-redis-cli queue myspider:start_urls

这里使用了 Scrapy-Redis 的命令行工具 scrapy-redis-cli,并将 myspider:start_urls 作为参数,表示将它们添加到 Redis 中。

这篇关于电商API接口|Python爬虫 | 如何用Python爬虫一天内收集数百万条电商数据?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/880747

相关文章

基于Python开发Windows屏幕控制工具

《基于Python开发Windows屏幕控制工具》在数字化办公时代,屏幕管理已成为提升工作效率和保护眼睛健康的重要环节,本文将分享一个基于Python和PySide6开发的Windows屏幕控制工具,... 目录概述功能亮点界面展示实现步骤详解1. 环境准备2. 亮度控制模块3. 息屏功能实现4. 息屏时间

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪

springboot下载接口限速功能实现

《springboot下载接口限速功能实现》通过Redis统计并发数动态调整每个用户带宽,核心逻辑为每秒读取并发送限定数据量,防止单用户占用过多资源,确保整体下载均衡且高效,本文给大家介绍spring... 目录 一、整体目标 二、涉及的主要类/方法✅ 三、核心流程图解(简化) 四、关键代码详解1️⃣ 设置

Python中图片与PDF识别文本(OCR)的全面指南

《Python中图片与PDF识别文本(OCR)的全面指南》在数据爆炸时代,80%的企业数据以非结构化形式存在,其中PDF和图像是最主要的载体,本文将深入探索Python中OCR技术如何将这些数字纸张转... 目录一、OCR技术核心原理二、python图像识别四大工具库1. Pytesseract - 经典O

基于Linux的ffmpeg python的关键帧抽取

《基于Linux的ffmpegpython的关键帧抽取》本文主要介绍了基于Linux的ffmpegpython的关键帧抽取,实现以按帧或时间间隔抽取关键帧,文中通过示例代码介绍的非常详细,对大家的学... 目录1.FFmpeg的环境配置1) 创建一个虚拟环境envjavascript2) ffmpeg-py

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

Python打印对象所有属性和值的方法小结

《Python打印对象所有属性和值的方法小结》在Python开发过程中,调试代码时经常需要查看对象的当前状态,也就是对象的所有属性和对应的值,然而,Python并没有像PHP的print_r那样直接提... 目录python中打印对象所有属性和值的方法实现步骤1. 使用vars()和pprint()2. 使

HTML5 getUserMedia API网页录音实现指南示例小结

《HTML5getUserMediaAPI网页录音实现指南示例小结》本教程将指导你如何利用这一API,结合WebAudioAPI,实现网页录音功能,从获取音频流到处理和保存录音,整个过程将逐步... 目录1. html5 getUserMedia API简介1.1 API概念与历史1.2 功能与优势1.3

spring中的ImportSelector接口示例详解

《spring中的ImportSelector接口示例详解》Spring的ImportSelector接口用于动态选择配置类,实现条件化和模块化配置,关键方法selectImports根据注解信息返回... 目录一、核心作用二、关键方法三、扩展功能四、使用示例五、工作原理六、应用场景七、自定义实现Impor