数学知识--(欧拉函数,快速幂,扩展欧几里得算法)

2024-04-06 13:44

本文主要是介绍数学知识--(欧拉函数,快速幂,扩展欧几里得算法),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文用于记录个人算法竞赛学习,仅供参考

目录

一.欧拉函数

 二.欧拉函数模板

三.用筛法求每个数的欧拉函数

 四.快速幂

 五.扩展欧几里得算法

 六.用扩展欧几里得算法求线性同余方程


一.欧拉函数

 即有一个数n, n通过质因数分解得到n=^{​{_{\rho 1}}^{\alpha 1} \cdot {_{\rho 2}}^{\alpha 2} ... {_{\rho k}}^{\alpha k}}

通过欧拉函数有\phi (n) = n(1-\frac{1}{\rho 1})(1-\frac{1}{\rho 2})...(1-\frac{1}{\rho k})

证明:容斥原理

 二.欧拉函数模板

\phi (n) = n(1-\frac{1}{\rho 1})(1-\frac{1}{\rho 2})...(1-\frac{1}{\rho k})

实际上就是分解质因数

时间复杂度:O(n^{\frac{1}{2}})

//计算一个数的欧拉函数的值
int phi(int x)
{int result = x;//分解质因数for (int i = 2; i <= x / i; i++){if (x % i == 0){//注意变形result = result / i * (i - 1);//将质数i除干净while (x % i == 0)x /= i;}}if (x > 1)result = result / x * (x - 1);return result;
}

三.用筛法求每个数的欧拉函数

求一个数的欧拉函数是O(n^{\frac{1}{2}}), 用遍历每个数的方法来求每个数欧拉函数时间复杂度是O(n*n^{\frac{1}{2}}),用筛法求每个数的欧拉函数只需要O(n)

//筛法求欧拉函数const int N = 100;
int primes[N], cnt; //primes存储素数,cnt用于计数
int eulers[N];       //存储每个数的欧拉函数
bool st[N];         //st判断该数是否被筛掉void get_eulers(int n)
{eulers[1] = 1;for (int i = 2; i <= n; i++){if (!st[i]){primes[cnt++] = i;eulers[i] = i - 1;}for (int j = 0; primes[j] <= n / i; j++){int t = primes[j] * i;st[t] = true;if (i % primes[j] == 0){eulers[t] = eulers[i] * primes[j];break;}eulers[t] = eulers[i] * (primes[j] - 1);}}
}

 四.快速幂

 

//求 m^ k mod p,时间复杂度 O(logk)。int qmi(int m, int k, int p)
{int result = 1;int t = m;while (k){if (k & 1)result = result * t % p;t = t * t % p;k >>= 1;}return result;
}

 五.扩展欧几里得算法

 

 

//扩展欧几里得算法
//ax + by = gcd(a,b),求x,y
//注意xy是&
int exgcd(int a, int b, int& x, int& y)
{//递归终点if (!b){x = 1, y = 0;return a;}int d = exgcd(b, a % b, y, x);y -= (a / b) * x;return d;
}

 六.用扩展欧几里得算法求线性同余方程

//扩展欧几里得算法
//ax + by = gcd(a,b),求x,y
//注意xy是&
int exgcd(int a, int b, int& x, int& y)
{//递归终点if (!b){x = 1, y = 0;return a;}int d = exgcd(b, a % b, y, x);y -= (a / b) * x;return d;
}int main()
{int n;scanf("%d", &n);while (n--){int a, b, m;scanf("%d %d %d", &a, &b, &m);int x = 0, y = 0;int d = exgcd(a, m, x, y);if (b % d != 0)printf("impossible\n");elseprintf("%d\n", (b / d) * x % m);}return 0;
}

 

这篇关于数学知识--(欧拉函数,快速幂,扩展欧几里得算法)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/880025

相关文章

一文详解如何在idea中快速搭建一个Spring Boot项目

《一文详解如何在idea中快速搭建一个SpringBoot项目》IntelliJIDEA作为Java开发者的‌首选IDE‌,深度集成SpringBoot支持,可一键生成项目骨架、智能配置依赖,这篇文... 目录前言1、创建项目名称2、勾选需要的依赖3、在setting中检查maven4、编写数据源5、开启热

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

Spring组件实例化扩展点之InstantiationAwareBeanPostProcessor使用场景解析

《Spring组件实例化扩展点之InstantiationAwareBeanPostProcessor使用场景解析》InstantiationAwareBeanPostProcessor是Spring... 目录一、什么是InstantiationAwareBeanPostProcessor?二、核心方法解

Python中bisect_left 函数实现高效插入与有序列表管理

《Python中bisect_left函数实现高效插入与有序列表管理》Python的bisect_left函数通过二分查找高效定位有序列表插入位置,与bisect_right的区别在于处理重复元素时... 目录一、bisect_left 基本介绍1.1 函数定义1.2 核心功能二、bisect_left 与

java中BigDecimal里面的subtract函数介绍及实现方法

《java中BigDecimal里面的subtract函数介绍及实现方法》在Java中实现减法操作需要根据数据类型选择不同方法,主要分为数值型减法和字符串减法两种场景,本文给大家介绍java中BigD... 目录Java中BigDecimal里面的subtract函数的意思?一、数值型减法(高精度计算)1.

C++/类与对象/默认成员函数@构造函数的用法

《C++/类与对象/默认成员函数@构造函数的用法》:本文主要介绍C++/类与对象/默认成员函数@构造函数的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录名词概念默认成员函数构造函数概念函数特征显示构造函数隐式构造函数总结名词概念默认构造函数:不用传参就可以

C++类和对象之默认成员函数的使用解读

《C++类和对象之默认成员函数的使用解读》:本文主要介绍C++类和对象之默认成员函数的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、默认成员函数有哪些二、各默认成员函数详解默认构造函数析构函数拷贝构造函数拷贝赋值运算符三、默认成员函数的注意事项总结一

Python函数返回多个值的多种方法小结

《Python函数返回多个值的多种方法小结》在Python中,函数通常用于封装一段代码,使其可以重复调用,有时,我们希望一个函数能够返回多个值,Python提供了几种不同的方法来实现这一点,需要的朋友... 目录一、使用元组(Tuple):二、使用列表(list)三、使用字典(Dictionary)四、 使

MybatisX快速生成增删改查的方法示例

《MybatisX快速生成增删改查的方法示例》MybatisX是基于IDEA的MyBatis/MyBatis-Plus开发插件,本文主要介绍了MybatisX快速生成增删改查的方法示例,文中通过示例代... 目录1 安装2 基本功能2.1 XML跳转2.2 代码生成2.2.1 生成.xml中的sql语句头2