【编程珠玑】第十四章 堆(排序,优先级队列)

2024-04-05 01:48

本文主要是介绍【编程珠玑】第十四章 堆(排序,优先级队列),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一,堆

       1)堆:任何结点的值都小于或等于其孩子的值的完全二叉树为小根堆

                    任何结点的值都大于或等于其孩子的值的完全二叉树为大根堆

      为了方便使用完全二叉树的性质,数组从下标1开始。

            这样:leftChild = 2*i ;  

                       rightChild = 2*i + 1 ;  

                       parent = i/2 ; 

                       null   i < 1  or  i > n


       2)堆算法分析

            堆排序的最坏时间复杂度为O(nlogn)。堆序的平均性能较接近于最坏性能。

       由于建初始堆所需的比较次数较多,所以堆排序不适宜于记录数较少的文件。
       堆排序是就地排序,辅助空间为O(1)

            堆排序是不稳定的

  

       3)堆实现

            【特别注意】堆不一定是完全二叉树但是一般采用完全二叉树,主要是利于存储和运算。堆排序作用在数组上

                                  

             初始建立堆:

                        给一个数组,将数组看做完全二叉树。

                        从最后一个非叶结点(length/2,下标从1开始),直到第一个结点a[1],向上调整建立堆。

             排序和堆调整

                        将第一个值a[1] 跟最后一个值交换,然后对 a[1] 调整堆(此时数组长度调整为length-1)


            【注意】这里初始建堆,只考虑已经有n个元素,向下调整建堆就可以搞定。

                           但是对于insert(t)怎么办? 采用向上调整堆的策略。详细见下文优先队列。

       4)源码

#include"stdio.h"
inline void swap(int &a,int &b)
{
int temp=a;
a=b;
b=temp;
}
void HeapAdjust(int array[],int i,int nLength)//自顶向下调整堆
{
int nChild;
int nTemp;//赋值为待调整的 节点
for(nTemp=array[i];2*i<nLength;i=nChild)//2*i<nLength说明还有左孩子
{
nChild=2*i;//左孩子  
/*一共两个子节点的话得到 较大的一个*/		   
if(nChild<nLength-1&&array[nChild+1]>array[nChild])//nChild<nLength-1 判断到头没有
++nChild;
/*如果较大子节点大于父节点  将子节点 调整到父节点*/
if(nTemp<array[nChild])
array[i]=array[nChild];
else
break;//这个地方不加 会出错  第一个会输出第二个 
array[nChild]=nTemp;//子节点 等于父节点 (不执行break)
} 
}
void HeapSort(int a[],int length)
{
/*初建堆 */
for(int i=length/2;i>0;--i)//从最后一个 非叶子节点调整 (这里的  i是下标) 
HeapAdjust(a,i,length);
for(int i=length;i>1;--i)
{
swap(a[1],a[i]);	/*第一个最大元素跟最后一个交换*/
HeapAdjust(a,1,i);//调整堆 (注意 length=i  由于堆是逐渐变小的)
}
}
int main()
{
int a[10]={0,1,2,5,3,8,4,7,6};
HeapSort(a,8);
for(int i=1;i<9;i++)
printf("%d\n",a[i]);
return 0;
}


二,优先队列

        1)优先队列是0个或多个元素的集合,每个元素都有一个优先权或值,对优先队列执行的操作有1) 查找; 2) 插入一个新元素; 3) 删除.

              在最小优先队列(min priorityq u e u e)中,查找操作用来搜索优先权最小的元素,删除操作用来删除该元素;

              对于最大优先队列(max priority queue),查找操作用来搜索优先权最大的元素,删除操作用来删除该元素.

              优先权队列中的元素可以有相同的优先权,查找与删除操作可根据任意优先权进行.

            

        2)优先队列实现

              初始化一个数组,向空数组依次插入元素,每插入一个元素向上调整一次堆。

              删除元素,将第一个元素跟最后一个元素交换,并向下调整堆

   

        3)代码实现

#include <iostream>
using namespace std;
template<class T>
class priqueue {
private:
int	n, maxsize;
T	*x;
void swap(int &i, int &j)//根据坐标交换数组元素的值
{	T t = i; i = j; j = t; }
public:
priqueue(int m)//初始化数组
{	maxsize = m;
x = new T[maxsize+1];
n = 0;
}
void insert(T t)
{	int i, p;
x[++n] = t; //插入的元素放到最后
for (i = n; i > 1 && x[p=i/2] > x[i]; i = p)    
swap(x[p], x[i]);
}
T extractmin()//向下调整堆
{	           
int i, c;
T t = x[1];
x[1] = x[n--];
for (i = 1; (c=2*i) <= n; i = c) {
if (c+1<=n && x[c+1]<x[c])
c++;
if (x[i] <= x[c])
break;
swap(x[c], x[i]);
}
return t;
}
void print(int n)
{
for (int i = 1; i < n; i++) //输出堆
cout << x[i] << " ";
}
};
template<class T>
void pqsort(T v[], int n)//先初始化一个数组,然后插入建立一个堆
{	priqueue<T> pq(n); 
int i;
for (i = 0; i < n; i++)
pq.insert(v[i]);
cout<<"输出排序后的堆:";
pq.print(n);
}
int main()
{	const int	n = 10;
int	i, v[n];
/*以下是通过向上调整堆 建立一个10个元素的堆*/
for (i = 0; i < n; i++)
v[i] = n-i;      
pqsort(v, n);
cout<<"\n执行插入和删除操作(输入0代表删除最小值,输入其他代表插入)"<<endl;
priqueue<int> pq(100);
int count=0;
while (cin >> i)
if (i == 0)
{
if(count)
cout <<"删除的最小元素为:"<<pq.extractmin() << "\n";
else
cout<<"请先插入元素"<<endl;
}
else
{
pq.insert(i);
count++;
}
return 0;
}


三,习题

       1)为了提高向上调整堆的速度,在x[0] 放置哨兵=当前插入的元素。省去了每次都判断  i>1

             向上调整堆结束:x[p] <= x[i]  

 

void insert(T t) //向上调整堆
{	int i, p;
x[++n] = t; //插入的元素放到最后
x[0]=t;
for (i = n;  x[p=i/2] > x[i]; i = p)    
swap(x[p], x[i]);
}

        4)a.构造哈夫曼树时候,需要选取当前数组的两个最小值,删除两个最小值,并将计算之和插入原来数组。

                 采用堆,初建堆,两次调用选取最小值的函数。计算之和之后,调用插入堆并调整堆


             b.如果将较小浮点数和较大浮点数相加可能造成丢失精度。所以每次取最小的两个相加。然后将和插入数组集合。最后剩下一个就是所有浮点数的和


             c.典型的topK


             d.将所有小文件 要插入的当前值组成一个堆。

                 取堆最小值,插入排序数组。调整堆。然后插入该小文件下一个元素(无后继则不操作)


        5)剩余容量组成堆,权值升序插入堆


        6)求指教(没看懂)


        7)求指教(没看懂)



这篇关于【编程珠玑】第十四章 堆(排序,优先级队列)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/877365

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

MySQL的JDBC编程详解

《MySQL的JDBC编程详解》:本文主要介绍MySQL的JDBC编程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、前置知识1. 引入依赖2. 认识 url二、JDBC 操作流程1. JDBC 的写操作2. JDBC 的读操作总结前言本文介绍了mysq

RabbitMQ 延时队列插件安装与使用示例详解(基于 Delayed Message Plugin)

《RabbitMQ延时队列插件安装与使用示例详解(基于DelayedMessagePlugin)》本文详解RabbitMQ通过安装rabbitmq_delayed_message_exchan... 目录 一、什么是 RabbitMQ 延时队列? 二、安装前准备✅ RabbitMQ 环境要求 三、安装延时队

Python异步编程之await与asyncio基本用法详解

《Python异步编程之await与asyncio基本用法详解》在Python中,await和asyncio是异步编程的核心工具,用于高效处理I/O密集型任务(如网络请求、文件读写、数据库操作等),接... 目录一、核心概念二、使用场景三、基本用法1. 定义协程2. 运行协程3. 并发执行多个任务四、关键

AOP编程的基本概念与idea编辑器的配合体验过程

《AOP编程的基本概念与idea编辑器的配合体验过程》文章简要介绍了AOP基础概念,包括Before/Around通知、PointCut切入点、Advice通知体、JoinPoint连接点等,说明它们... 目录BeforeAroundAdvise — 通知PointCut — 切入点Acpect — 切面

C#异步编程ConfigureAwait的使用小结

《C#异步编程ConfigureAwait的使用小结》本文介绍了异步编程在GUI和服务器端应用的优势,详细的介绍了async和await的关键作用,通过实例解析了在UI线程正确使用await.Conf... 异步编程是并发的一种形式,它有两大好处:对于面向终端用户的GUI程序,提高了响应能力对于服务器端应

C++归并排序代码实现示例代码

《C++归并排序代码实现示例代码》归并排序将待排序数组分成两个子数组,分别对这两个子数组进行排序,然后将排序好的子数组合并,得到排序后的数组,:本文主要介绍C++归并排序代码实现的相关资料,需要的... 目录1 算法核心思想2 代码实现3 算法时间复杂度1 算法核心思想归并排序是一种高效的排序方式,需要用

C# async await 异步编程实现机制详解

《C#asyncawait异步编程实现机制详解》async/await是C#5.0引入的语法糖,它基于**状态机(StateMachine)**模式实现,将异步方法转换为编译器生成的状态机类,本... 目录一、async/await 异步编程实现机制1.1 核心概念1.2 编译器转换过程1.3 关键组件解析

Go语言数据库编程GORM 的基本使用详解

《Go语言数据库编程GORM的基本使用详解》GORM是Go语言流行的ORM框架,封装database/sql,支持自动迁移、关联、事务等,提供CRUD、条件查询、钩子函数、日志等功能,简化数据库操作... 目录一、安装与初始化1. 安装 GORM 及数据库驱动2. 建立数据库连接二、定义模型结构体三、自动迁

一文详解Java Stream的sorted自定义排序

《一文详解JavaStream的sorted自定义排序》Javastream中的sorted方法是用于对流中的元素进行排序的方法,它可以接受一个comparator参数,用于指定排序规则,sorte... 目录一、sorted 操作的基础原理二、自定义排序的实现方式1. Comparator 接口的 Lam