【编程珠玑】第十四章 堆(排序,优先级队列)

2024-04-05 01:48

本文主要是介绍【编程珠玑】第十四章 堆(排序,优先级队列),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一,堆

       1)堆:任何结点的值都小于或等于其孩子的值的完全二叉树为小根堆

                    任何结点的值都大于或等于其孩子的值的完全二叉树为大根堆

      为了方便使用完全二叉树的性质,数组从下标1开始。

            这样:leftChild = 2*i ;  

                       rightChild = 2*i + 1 ;  

                       parent = i/2 ; 

                       null   i < 1  or  i > n


       2)堆算法分析

            堆排序的最坏时间复杂度为O(nlogn)。堆序的平均性能较接近于最坏性能。

       由于建初始堆所需的比较次数较多,所以堆排序不适宜于记录数较少的文件。
       堆排序是就地排序,辅助空间为O(1)

            堆排序是不稳定的

  

       3)堆实现

            【特别注意】堆不一定是完全二叉树但是一般采用完全二叉树,主要是利于存储和运算。堆排序作用在数组上

                                  

             初始建立堆:

                        给一个数组,将数组看做完全二叉树。

                        从最后一个非叶结点(length/2,下标从1开始),直到第一个结点a[1],向上调整建立堆。

             排序和堆调整

                        将第一个值a[1] 跟最后一个值交换,然后对 a[1] 调整堆(此时数组长度调整为length-1)


            【注意】这里初始建堆,只考虑已经有n个元素,向下调整建堆就可以搞定。

                           但是对于insert(t)怎么办? 采用向上调整堆的策略。详细见下文优先队列。

       4)源码

#include"stdio.h"
inline void swap(int &a,int &b)
{
int temp=a;
a=b;
b=temp;
}
void HeapAdjust(int array[],int i,int nLength)//自顶向下调整堆
{
int nChild;
int nTemp;//赋值为待调整的 节点
for(nTemp=array[i];2*i<nLength;i=nChild)//2*i<nLength说明还有左孩子
{
nChild=2*i;//左孩子  
/*一共两个子节点的话得到 较大的一个*/		   
if(nChild<nLength-1&&array[nChild+1]>array[nChild])//nChild<nLength-1 判断到头没有
++nChild;
/*如果较大子节点大于父节点  将子节点 调整到父节点*/
if(nTemp<array[nChild])
array[i]=array[nChild];
else
break;//这个地方不加 会出错  第一个会输出第二个 
array[nChild]=nTemp;//子节点 等于父节点 (不执行break)
} 
}
void HeapSort(int a[],int length)
{
/*初建堆 */
for(int i=length/2;i>0;--i)//从最后一个 非叶子节点调整 (这里的  i是下标) 
HeapAdjust(a,i,length);
for(int i=length;i>1;--i)
{
swap(a[1],a[i]);	/*第一个最大元素跟最后一个交换*/
HeapAdjust(a,1,i);//调整堆 (注意 length=i  由于堆是逐渐变小的)
}
}
int main()
{
int a[10]={0,1,2,5,3,8,4,7,6};
HeapSort(a,8);
for(int i=1;i<9;i++)
printf("%d\n",a[i]);
return 0;
}


二,优先队列

        1)优先队列是0个或多个元素的集合,每个元素都有一个优先权或值,对优先队列执行的操作有1) 查找; 2) 插入一个新元素; 3) 删除.

              在最小优先队列(min priorityq u e u e)中,查找操作用来搜索优先权最小的元素,删除操作用来删除该元素;

              对于最大优先队列(max priority queue),查找操作用来搜索优先权最大的元素,删除操作用来删除该元素.

              优先权队列中的元素可以有相同的优先权,查找与删除操作可根据任意优先权进行.

            

        2)优先队列实现

              初始化一个数组,向空数组依次插入元素,每插入一个元素向上调整一次堆。

              删除元素,将第一个元素跟最后一个元素交换,并向下调整堆

   

        3)代码实现

#include <iostream>
using namespace std;
template<class T>
class priqueue {
private:
int	n, maxsize;
T	*x;
void swap(int &i, int &j)//根据坐标交换数组元素的值
{	T t = i; i = j; j = t; }
public:
priqueue(int m)//初始化数组
{	maxsize = m;
x = new T[maxsize+1];
n = 0;
}
void insert(T t)
{	int i, p;
x[++n] = t; //插入的元素放到最后
for (i = n; i > 1 && x[p=i/2] > x[i]; i = p)    
swap(x[p], x[i]);
}
T extractmin()//向下调整堆
{	           
int i, c;
T t = x[1];
x[1] = x[n--];
for (i = 1; (c=2*i) <= n; i = c) {
if (c+1<=n && x[c+1]<x[c])
c++;
if (x[i] <= x[c])
break;
swap(x[c], x[i]);
}
return t;
}
void print(int n)
{
for (int i = 1; i < n; i++) //输出堆
cout << x[i] << " ";
}
};
template<class T>
void pqsort(T v[], int n)//先初始化一个数组,然后插入建立一个堆
{	priqueue<T> pq(n); 
int i;
for (i = 0; i < n; i++)
pq.insert(v[i]);
cout<<"输出排序后的堆:";
pq.print(n);
}
int main()
{	const int	n = 10;
int	i, v[n];
/*以下是通过向上调整堆 建立一个10个元素的堆*/
for (i = 0; i < n; i++)
v[i] = n-i;      
pqsort(v, n);
cout<<"\n执行插入和删除操作(输入0代表删除最小值,输入其他代表插入)"<<endl;
priqueue<int> pq(100);
int count=0;
while (cin >> i)
if (i == 0)
{
if(count)
cout <<"删除的最小元素为:"<<pq.extractmin() << "\n";
else
cout<<"请先插入元素"<<endl;
}
else
{
pq.insert(i);
count++;
}
return 0;
}


三,习题

       1)为了提高向上调整堆的速度,在x[0] 放置哨兵=当前插入的元素。省去了每次都判断  i>1

             向上调整堆结束:x[p] <= x[i]  

 

void insert(T t) //向上调整堆
{	int i, p;
x[++n] = t; //插入的元素放到最后
x[0]=t;
for (i = n;  x[p=i/2] > x[i]; i = p)    
swap(x[p], x[i]);
}

        4)a.构造哈夫曼树时候,需要选取当前数组的两个最小值,删除两个最小值,并将计算之和插入原来数组。

                 采用堆,初建堆,两次调用选取最小值的函数。计算之和之后,调用插入堆并调整堆


             b.如果将较小浮点数和较大浮点数相加可能造成丢失精度。所以每次取最小的两个相加。然后将和插入数组集合。最后剩下一个就是所有浮点数的和


             c.典型的topK


             d.将所有小文件 要插入的当前值组成一个堆。

                 取堆最小值,插入排序数组。调整堆。然后插入该小文件下一个元素(无后继则不操作)


        5)剩余容量组成堆,权值升序插入堆


        6)求指教(没看懂)


        7)求指教(没看懂)



这篇关于【编程珠玑】第十四章 堆(排序,优先级队列)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/877365

相关文章

Java中常见队列举例详解(非线程安全)

《Java中常见队列举例详解(非线程安全)》队列用于模拟队列这种数据结构,队列通常是指先进先出的容器,:本文主要介绍Java中常见队列(非线程安全)的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一.队列定义 二.常见接口 三.常见实现类3.1 ArrayDeque3.1.1 实现原理3.1.2

C++ RabbitMq消息队列组件详解

《C++RabbitMq消息队列组件详解》:本文主要介绍C++RabbitMq消息队列组件的相关知识,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. RabbitMq介绍2. 安装RabbitMQ3. 安装 RabbitMQ 的 C++客户端库4. A

golang实现延迟队列(delay queue)的两种实现

《golang实现延迟队列(delayqueue)的两种实现》本文主要介绍了golang实现延迟队列(delayqueue)的两种实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目录1 延迟队列:邮件提醒、订单自动取消2 实现2.1 simplChina编程e简单版:go自带的time

Java List排序实例代码详解

《JavaList排序实例代码详解》:本文主要介绍JavaList排序的相关资料,Java排序方法包括自然排序、自定义排序、Lambda简化及多条件排序,实现灵活且代码简洁,文中通过代码介绍的... 目录一、自然排序二、自定义排序规则三、使用 Lambda 表达式简化 Comparator四、多条件排序五、

JAVA数组中五种常见排序方法整理汇总

《JAVA数组中五种常见排序方法整理汇总》本文给大家分享五种常用的Java数组排序方法整理,每种方法结合示例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录前言:法一:Arrays.sort()法二:冒泡排序法三:选择排序法四:反转排序法五:直接插入排序前言:几种常用的Java数组排序

Nginx路由匹配规则及优先级详解

《Nginx路由匹配规则及优先级详解》Nginx作为一个高性能的Web服务器和反向代理服务器,广泛用于负载均衡、请求转发等场景,在配置Nginx时,路由匹配规则是非常重要的概念,本文将详细介绍Ngin... 目录引言一、 Nginx的路由匹配规则概述二、 Nginx的路由匹配规则类型2.1 精确匹配(=)2

Python 异步编程 asyncio简介及基本用法

《Python异步编程asyncio简介及基本用法》asyncio是Python的一个库,用于编写并发代码,使用协程、任务和Futures来处理I/O密集型和高延迟操作,本文给大家介绍Python... 目录1、asyncio是什么IO密集型任务特征2、怎么用1、基本用法2、关键字 async1、async

Java并发编程之如何优雅关闭钩子Shutdown Hook

《Java并发编程之如何优雅关闭钩子ShutdownHook》这篇文章主要为大家详细介绍了Java如何实现优雅关闭钩子ShutdownHook,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起... 目录关闭钩子简介关闭钩子应用场景数据库连接实战演示使用关闭钩子的注意事项开源框架中的关闭钩子机制1.

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

Redis消息队列实现异步秒杀功能

《Redis消息队列实现异步秒杀功能》在高并发场景下,为了提高秒杀业务的性能,可将部分工作交给Redis处理,并通过异步方式执行,Redis提供了多种数据结构来实现消息队列,总结三种,本文详细介绍Re... 目录1 Redis消息队列1.1 List 结构1.2 Pub/Sub 模式1.3 Stream 结