代码随想录算法训练营第二十三天| 669.修建二叉搜索树、108.将有序数组转换为二叉搜索树、538.把二叉搜索树转换为累加树

本文主要是介绍代码随想录算法训练营第二十三天| 669.修建二叉搜索树、108.将有序数组转换为二叉搜索树、538.把二叉搜索树转换为累加树,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

系列文章目录


目录

  • 系列文章目录
  • 669. 修剪二叉搜索树
    • ①递归法
    • ②迭代法(不好想出,掌握递归即可)
  • 108.将有序数组转换为二叉搜索树
    • 递归法
      • [左闭右开)
      • [左闭右闭]
  • 538.把二叉搜索树转换为累加树
    • ①递归法-反中序遍历(右中左)+双指针
    • ②迭代法-反中序遍历(右中左)+双指针
      • 统一迭代法
      • 普通迭代法


669. 修剪二叉搜索树

①递归法

:不能在遇到 root.val < low || root.val > high 的时候直接return null,因为下图所示:在这里插入图片描述
[1, 3]区间在二叉搜索树的中可不是单纯的节点3和左孩子节点0就决定的,还要考虑节点0的右子树。节点0并不符合区间要求,那么将节点0的右孩子 节点2 直接赋给 节点3的左孩子就可以了(就是把节点0从二叉树中移除),如下图所示:
在这里插入图片描述

class Solution {public TreeNode trimBST(TreeNode root, int low, int high) {//确定终止条件if (root == null) return null;//确定单层递归的逻辑//中//如果root(当前节点)的元素小于low的数值,那么应该递归右子树,并返回右子树符合条件的头结点。if (root.val < low) {return trimBST(root.right, low, high);}//如果root(当前节点)的元素大于high的,那么应该递归左子树,并返回左子树符合条件的头结点。if (root.val > high) {return trimBST(root.left, low, high);}root.left = trimBST(root.left, low, high);//左 接入符合条件的左子树root.right = trimBST(root.right, low, high);//右 接入符合条件的右子树return root;}
}

②迭代法(不好想出,掌握递归即可)

  1. 因为二叉搜索树的有序性,不需要使用栈模拟递归的过程。
  2. 在剪枝的时候,可以分为三步:
    • root移动到[L, R] 范围内,注意是左闭右闭区间;
    • 剪枝左子树;
    • 剪枝右子树;
class Solution {public TreeNode trimBST(TreeNode root, int low, int high) {if (root == null) return null;//中 确定最后要返回的根节点while (root != null && (root.val < low || root.val > high)) {if (root.val < low) {root = root.right;} else {root = root.left;}}//在根节点一定在区间内的前提下,剪枝//左、对左子树剪枝,左子树的所有节点都小于high,只需要判断是否小于lowTreeNode curr = root;while (curr != null) {// 如果左节点的值小于low,证明左节点以及左节点的左子树都小于low,要剪掉,继续判断左节点的右子树即可while (curr.left != null && curr.left.val < low) {curr.left = curr.left.right;}// 现在的左节点大于等于low,则继续往左遍历curr = curr.left;}//右 对右子树剪枝,右子树的所有节点都大于low,只需要判断节点是否大于highcurr = root;// 如果右节点的值大于high,证明右节点以及右节点的的右子树都大于high,要剪掉,继续判断右节点的左子树即可while (curr != null) {while (curr.right != null && curr.right.val > high) {curr.right = curr.right.left;}// 现在的右节点小于等于high,则继续往右遍历curr = curr.right;}return root;}
}

108.将有序数组转换为二叉搜索树

本质就是寻找分割点,分割点作为当前节点,然后递归左区间和右区间。分割点就是数组中间位置的节点。如果数组长度为偶数,中间节点有两个,取哪一个都可以,只不过构成了不同的平衡二叉搜索树。

递归法

1.在构造二叉树的时候尽量不要重新定义左右区间数组,而是用下标来操作原数组。
2.取数组中间元素的位置,不难写出int mid = (left + right) / 2;,这么写其实有一个问题,就是数值越界,例如leftright都是最大int,这么操作就越界了,尤其需要注意!所以可以这么写:int mid = left + ((right - left) / 2);

[左闭右开)

class Solution {public TreeNode sortedArrayToBST(int[] nums) {return makeBST(nums, 0, nums.length);}//左闭右开public TreeNode makeBST(int[] nums, int begin, int end) {//终止条件if (begin >= end) return null;//单层循环逻辑// 构建平衡二叉树的关键是选中间/靠近的节点作为根节点int index = begin + (end - begin) / 2;//中节点索引int rootVal = nums[index];TreeNode root = new TreeNode(rootVal);//构造根节点// 构建左右子树root.left = makeBST(nums, begin, index);root.right = makeBST(nums, index + 1, end);return root;}
}

[左闭右闭]

class Solution {public TreeNode sortedArrayToBST(int[] nums) {return makeBST(nums, 0, nums.length - 1);}public TreeNode makeBST(int[] nums, int begin, int end) {//终止条件if (begin > end) return null;//单层循环逻辑int index = begin + (end - begin) / 2;int rootVal = nums[index];TreeNode root = new TreeNode(rootVal);//创建根节点root.left = makeBST(nums, begin, index - 1);root.right = makeBST(nums, index + 1, end);return root;}
}

538.把二叉搜索树转换为累加树

这是一棵树,换一个角度来看,这就是一个有序数组[2, 5, 13],求从后到前的累加数组,也就是[20, 18, 13]。从树中可以看出累加的顺序是右中左,所以我们需要反中序遍历这个二叉树,然后顺序累加就可以了。本题依然需要一个pre指针记录当前遍历节点cur的前一个节点,这样才方便做累加。

①递归法-反中序遍历(右中左)+双指针

class Solution {TreeNode pre = null;int value = 0;public TreeNode convertBST(TreeNode root) {if (root == null) return null;root.right = convertBST(root.right);//右if (pre != null) {//中root.val += pre.val;}pre = root;root.left = convertBST(root.left);//左return root;}
}

②迭代法-反中序遍历(右中左)+双指针

统一迭代法

class Solution {public TreeNode convertBST(TreeNode root) {if (root == null) return null;Stack<TreeNode> st = new Stack<TreeNode>();st.push(root);TreeNode pre = null;while (!st.isEmpty()) {TreeNode node = st.peek();if (node != null) {st.pop();if (node.left != null) st.push(node.left);//左st.push(node);//中st.push(null);if (node.right != null) st.push(node.right);//右} else {//中节点处理逻辑st.pop();node = st.pop();if (pre != null) {node.val += pre.val;}pre = node;}}return root;}
}

普通迭代法

class Solution {public TreeNode convertBST(TreeNode root) {if (root == null) return null;Stack<TreeNode> st = new Stack<TreeNode>();TreeNode cur = root;TreeNode pre = null;while (cur != null || !st.isEmpty()) {if (cur != null) {st.push(cur);cur = cur.right;//右} else {cur = st.pop();//中if (pre != null) {cur.val += pre.val;}pre = cur;cur = cur.left;}}return root;}
}

这篇关于代码随想录算法训练营第二十三天| 669.修建二叉搜索树、108.将有序数组转换为二叉搜索树、538.把二叉搜索树转换为累加树的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/877045

相关文章

Java数组动态扩容的实现示例

《Java数组动态扩容的实现示例》本文主要介绍了Java数组动态扩容的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1 问题2 方法3 结语1 问题实现动态的给数组添加元素效果,实现对数组扩容,原始数组使用静态分配

JAVA项目swing转javafx语法规则以及示例代码

《JAVA项目swing转javafx语法规则以及示例代码》:本文主要介绍JAVA项目swing转javafx语法规则以及示例代码的相关资料,文中详细讲解了主类继承、窗口创建、布局管理、控件替换、... 目录最常用的“一行换一行”速查表(直接全局替换)实际转换示例(JFramejs → JavaFX)迁移建

Go异常处理、泛型和文件操作实例代码

《Go异常处理、泛型和文件操作实例代码》Go语言的异常处理机制与传统的面向对象语言(如Java、C#)所使用的try-catch结构有所不同,它采用了自己独特的设计理念和方法,:本文主要介绍Go异... 目录一:异常处理常见的异常处理向上抛中断程序恢复程序二:泛型泛型函数泛型结构体泛型切片泛型 map三:文

Python轻松实现Word到Markdown的转换

《Python轻松实现Word到Markdown的转换》在文档管理、内容发布等场景中,将Word转换为Markdown格式是常见需求,本文将介绍如何使用FreeSpire.DocforPython实现... 目录一、工具简介二、核心转换实现1. 基础单文件转换2. 批量转换Word文件三、工具特性分析优点局

MyBatis中的两种参数传递类型详解(示例代码)

《MyBatis中的两种参数传递类型详解(示例代码)》文章介绍了MyBatis中传递多个参数的两种方式,使用Map和使用@Param注解或封装POJO,Map方式适用于动态、不固定的参数,但可读性和安... 目录✅ android方式一:使用Map<String, Object>✅ 方式二:使用@Param

SpringBoot实现图形验证码的示例代码

《SpringBoot实现图形验证码的示例代码》验证码的实现方式有很多,可以由前端实现,也可以由后端进行实现,也有很多的插件和工具包可以使用,在这里,我们使用Hutool提供的小工具实现,本文介绍Sp... 目录项目创建前端代码实现约定前后端交互接口需求分析接口定义Hutool工具实现服务器端代码引入依赖获

利用Python在万圣节实现比心弹窗告白代码

《利用Python在万圣节实现比心弹窗告白代码》:本文主要介绍关于利用Python在万圣节实现比心弹窗告白代码的相关资料,每个弹窗会显示一条温馨提示,程序通过参数方程绘制爱心形状,并使用多线程技术... 目录前言效果预览要点1. 爱心曲线方程2. 显示温馨弹窗函数(详细拆解)2.1 函数定义和延迟机制2.2

使用C#实现将RTF转换为PDF

《使用C#实现将RTF转换为PDF》RTF(RichTextFormat)是一种通用的文档格式,允许用户在不同的文字处理软件中保存和交换格式化文本,下面我们就来看看如何使用C#实现将RTF转换为PDF... 目录Spire.Doc for .NET 简介安装 Spire.Doc代码示例处理异常总结RTF(R

Springmvc常用的注解代码示例

《Springmvc常用的注解代码示例》本文介绍了SpringMVC中常用的控制器和请求映射注解,包括@Controller、@RequestMapping等,以及请求参数绑定注解,如@Request... 目录一、控制器与请求映射注解二、请求参数绑定注解三、其他常用注解(扩展)四、注解使用注意事项一、控制

C++简单日志系统实现代码示例

《C++简单日志系统实现代码示例》日志系统是成熟软件中的一个重要组成部分,其记录软件的使用和运行行为,方便事后进行故障分析、数据统计等,:本文主要介绍C++简单日志系统实现的相关资料,文中通过代码... 目录前言Util.hppLevel.hppLogMsg.hppFormat.hppSink.hppBuf