glm2大语言模型服务环境搭建

2024-04-04 16:36

本文主要是介绍glm2大语言模型服务环境搭建,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、模型介绍

ChatGLM2-6B 是开源中英双语对话模型 ChatGLM-6B 的第二代版本,在保留了初代模型对话流畅、部署门槛较低等众多优秀特性的基础之上,ChatGLM2-6B 引入了如下新特性:

更强大的性能:基于 ChatGLM 初代模型的开发经验,我们全面升级了 ChatGLM2-6B 的基座模型。ChatGLM2-6B 使用了 GLM 的混合目标函数,经过了 1.4T 中英标识符的预训练与人类偏好对齐训练,评测结果显示,相比于初代模型,ChatGLM2-6B 在 MMLU(+23%)、CEval(+33%)、GSM8K(+571%) 、BBH(+60%)等数据集上的性能取得了大幅度的提升,在同尺寸开源模型中具有较强的竞争力。
更长的上下文:基于 FlashAttention 技术,我们将基座模型的上下文长度(Context Length)由 ChatGLM-6B 的 2K 扩展到了 32K,并在对话阶段使用 8K 的上下文长度训练。对于更长的上下文,我们发布了 ChatGLM2-6B-32K 模型。LongBench 的测评结果表明,在等量级的开源模型中,ChatGLM2-6B-32K 有着较为明显的竞争优势。
更高效的推理:基于 Multi-Query Attention 技术,ChatGLM2-6B 有更高效的推理速度和更低的显存占用:在官方的模型实现下,推理速度相比初代提升了 42%,INT4 量化下,6G 显存支持的对话长度由 1K 提升到了 8K。
更开放的协议:ChatGLM2-6B 权重对学术研究完全开放,在填写问卷进行登记后亦允许免费商业使用。

二、基本环境介绍

芯片:910a
操作系统:openEULER

三、环境搭建

1、下载与芯片型号版本相应的驱动

1)下载驱动,链接为:https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/Ascend HDK/Ascend HDK 23.0.RC3/Ascend-hdk-910-npu-driver_23.0.rc3_linux-aarch64.run

加速卡的话是910的包:

2)修改权限:

chmod +x Ascend-hdk-910-npu-driver_23.0.rc3_linux-aarch64.run

3)安装驱动:

./Ascend-hdk-910-npu-driver_23.0.rc3_linux-aarch64.run --full --install-for-all
4) 重启:

Reboot

重启后可以查看驱动信息:npu-smi info
在这里插入图片描述

2、安装依赖库

# 安装gcc,make依赖软件等。
yum install -y gcc g++ make cmake  unzip pciutils net-tools  gfortran
sudo yum install openssl-devel
sudo yum install libffi-devel
sudo yum install zlib-devel
sudo yum install sqlite-devel
sudo yum install blas-devel
sudo yum install blas

3、安装python

使用python源码安装:
到python官网下载源码文件:Python Source Releases | Python.org
这里我们下载python3.8.10
https://www.python.org/ftp/python/3.8.10/Python-3.8.10.tgz

https://www.python.org/ftp/python/3.9.4/Python-3.9.4.tgz
下载成功后,安装:

tar -zxvf Python-3.9.4.tgz
cd Python-3.9.4
./configure --prefix=/usr/local/python3.8.10 --enable-optimizations --enable-shared --with-ssl
make&make install如果因为环境问题安装失败需要重新安装的话,务必执行一下
make clean 删除一下缓存ln -s /usr/local/python3.9.4/bin/python3.9 /usr/bin/python
ln -s /usr/local/python3.9.4/bin/pip3 /usr/bin/pip3
ln -s /usr/local/python3.9.4/bin/lib/libpython3.9m.so.1.0 /usr/lib64/mv /usr/bin/python /usr/bin/python.bak
ln -s /usr/bin/python3 /usr/bin/pythonexport LD_LIBRARY_PATH=/usr/python3.9.4/lib:$LD_LIBRARY_PATH

4、安装依赖包

pip install attrs
pip install numpy
pip install decorator
pip install sympy
pip install cffi
pip install pyyaml
pip install pathlib2
pip install psutil
pip install protobuf
pip install scipy
pip install requests
pip install absl-py
pip install loguru服务依赖
pip install fastapi
pip install "uvicorn[standard]"
Pip install requests为uvicorn添加软链:
ln -s /usr/local/python3.8.10/bin/uvicorn /usr/bin/uvicornpip uninstall te topi hccl -y
pip install sympy
pip install /usr/local/Ascend/ascend-toolkit/latest/lib64/te-*-py3-none-any.whl
pip install /usr/local/Ascend/ascend-toolkit/latest/lib64/hccl-*-py3-none-any.whl

5、安装cann

cann不支持python 3.9.7以上版本

参考:安装步骤(openEuler 22.03)-安装依赖-安装开发环境-…-文档首页-昇腾社区 (hiascend.com)

  1. 安装cann:到资源下载中心下载相应的cann包:资源下载中心-昇腾社区 (hiascend.com)
  2. 基于arm架构的最新版cann:
    在这里插入图片描述
  3. 下载:

wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/CANN/CANN%207.0.RC1/Ascend-cann-toolkit_7.0.RC1_linux-aarch64.run

  1. 下载到npu目录后,修改为可执行的权限:

chmod -R +x Ascend-cann-toolkit_7.0.RC1_linux-aarch64.run

  1. 执行安装,指定安装目录到 /usr/local/Ascend

./Ascend-cann-toolkit_7.0.RC1_linux-aarch64.run --install-path=/usr/local/Ascend —full

6、安装mindspore

参考 :MindSpore官网

安装gcc

sudo yum install gcc -y

卸载安装包

pip uninstall te topi hccl -y安装:
pip install sympy
pip install /usr/local/Ascend/ascend-toolkit/latest/lib64/te-*-py3-none-any.whl
pip install /usr/local/Ascend/ascend-toolkit/latest/lib64/hccl-*-py3-none-any.whl

安装mindspore:

pip install https://ms-release.obs.cn-north-4.myhuaweicloud.com/2.2.0/MindSpore/unified/aarch64/mindspore-2.2.0-cp39-cp39-linux_aarch64.whl --trusted-host ms-release.obs.cn-north-4.myhuaweicloud.com -i https://pypi.tuna.tsinghua.edu.cn/simple

配置环境变量:

# control log level. 0-DEBUG, 1-INFO, 2-WARNING, 3-ERROR, 4-CRITICAL, default level is WARNING.
export GLOG_v=2# Conda environmental options
LOCAL_ASCEND=/usr/local/Ascend # the root directory of run package# lib libraries that the run package depends on
export LD_LIBRARY_PATH=${LOCAL_ASCEND}/ascend-toolkit/latest/lib64:${LOCAL_ASCEND}/driver/lib64:${LOCAL_ASCEND}/ascend-toolkit/latest/opp/built-in/op_impl/ai_core/tbe/op_tiling:${LD_LIBRARY_PATH}# Environment variables that must be configured
## TBE operator implementation tool path
export TBE_IMPL_PATH=${LOCAL_ASCEND}/ascend-toolkit/latest/opp/built-in/op_impl/ai_core/tbe
## OPP path
export ASCEND_OPP_PATH=${LOCAL_ASCEND}/ascend-toolkit/latest/opp
## AICPU path
export ASCEND_AICPU_PATH=${ASCEND_OPP_PATH}/..
## TBE operator compilation tool path
export PATH=${LOCAL_ASCEND}/ascend-toolkit/latest/compiler/ccec_compiler/bin/:${PATH}
## Python library that TBE implementation depends on
export PYTHONPATH=${TBE_IMPL_PATH}:${PYTHONPATH}

7、验证安装

python -c "import mindspore;mindspore.set_context(device_target='Ascend');mindspore.run_check()"

在这里插入图片描述
验证没问题

在python命令行中键入下列语句,输出正确,没问题

import numpy as np
import mindspore as ms
import mindspore.ops as opsms.set_context(device_target="Ascend")
x = ms.Tensor(np.ones([1,3,3,4]).astype(np.float32))
y = ms.Tensor(np.ones([1,3,3,4]).astype(np.float32))
print(ops.add(x, y))

在这里插入图片描述

8、下载项目源码和模型文件

scp -r -P 25322 ./models root@180.169.210.135:/var/lib/docker/models

9、安装mindpet

Cd /usr/local/mindpet_code

wget https://gitee.com/mindspore-lab/mindpet/repository/archive/master.zip

unzip master.zip
cd mindpet-master/
python set_up.py bdist_wheel
pip install dist/mindpet-1.0.2-py3-none-any.whl

安装完成

10、安装mindformers

Cd /usr/local/mindformers_code

wget https://gitee.com/mindspore/mindformers/repository/archive/dev.zip

Unzip dev.zip
Cd mindformers-dev
bash build.sh

11、环境准备完成

这篇关于glm2大语言模型服务环境搭建的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/876295

相关文章

SpringBoot 多环境开发实战(从配置、管理与控制)

《SpringBoot多环境开发实战(从配置、管理与控制)》本文详解SpringBoot多环境配置,涵盖单文件YAML、多文件模式、MavenProfile分组及激活策略,通过优先级控制灵活切换环境... 目录一、多环境开发基础(单文件 YAML 版)(一)配置原理与优势(二)实操示例二、多环境开发多文件版

使用docker搭建嵌入式Linux开发环境

《使用docker搭建嵌入式Linux开发环境》本文主要介绍了使用docker搭建嵌入式Linux开发环境,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录1、前言2、安装docker3、编写容器管理脚本4、创建容器1、前言在日常开发全志、rk等不同

sysmain服务可以禁用吗? 电脑sysmain服务关闭后的影响与操作指南

《sysmain服务可以禁用吗?电脑sysmain服务关闭后的影响与操作指南》在Windows系统中,SysMain服务(原名Superfetch)作为一个旨在提升系统性能的关键组件,一直备受用户关... 在使用 Windows 系统时,有时候真有点像在「开盲盒」。全新安装系统后的「默认设置」,往往并不尽编

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

GO语言短变量声明的实现示例

《GO语言短变量声明的实现示例》在Go语言中,短变量声明是一种简洁的变量声明方式,使用:=运算符,可以自动推断变量类型,下面就来具体介绍一下如何使用,感兴趣的可以了解一下... 目录基本语法功能特点与var的区别适用场景注意事项基本语法variableName := value功能特点1、自动类型推

GO语言中函数命名返回值的使用

《GO语言中函数命名返回值的使用》在Go语言中,函数可以为其返回值指定名称,这被称为命名返回值或命名返回参数,这种特性可以使代码更清晰,特别是在返回多个值时,感兴趣的可以了解一下... 目录基本语法函数命名返回特点代码示例命名特点基本语法func functionName(parameters) (nam

Linux搭建ftp服务器的步骤

《Linux搭建ftp服务器的步骤》本文给大家分享Linux搭建ftp服务器的步骤,本文通过图文并茂的形式给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录ftp搭建1:下载vsftpd工具2:下载客户端工具3:进入配置文件目录vsftpd.conf配置文件4:

Nginx中配置使用非默认80端口进行服务的完整指南

《Nginx中配置使用非默认80端口进行服务的完整指南》在实际生产环境中,我们经常需要将Nginx配置在其他端口上运行,本文将详细介绍如何在Nginx中配置使用非默认端口进行服务,希望对大家有所帮助... 目录一、为什么需要使用非默认端口二、配置Nginx使用非默认端口的基本方法2.1 修改listen指令

SysMain服务可以关吗? 解决SysMain服务导致的高CPU使用率问题

《SysMain服务可以关吗?解决SysMain服务导致的高CPU使用率问题》SysMain服务是超级预读取,该服务会记录您打开应用程序的模式,并预先将它们加载到内存中以节省时间,但它可能占用大量... 在使用电脑的过程中,CPU使用率居高不下是许多用户都遇到过的问题,其中名为SysMain的服务往往是罪魁

Go语言连接MySQL数据库执行基本的增删改查

《Go语言连接MySQL数据库执行基本的增删改查》在后端开发中,MySQL是最常用的关系型数据库之一,本文主要为大家详细介绍了如何使用Go连接MySQL数据库并执行基本的增删改查吧... 目录Go语言连接mysql数据库准备工作安装 MySQL 驱动代码实现运行结果注意事项Go语言执行基本的增删改查准备工作