机器学习-采用正态贝叶斯分类器、决策树、随机森林对wine数据集分类

本文主要是介绍机器学习-采用正态贝叶斯分类器、决策树、随机森林对wine数据集分类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 关于wine数据集描述:http://archive.ics.uci.edu/ml/datasets/Wine
 
#include "opencv2/ml/ml.hpp"
#include "opencv2/core/core.hpp"
#include "opencv2/core/utility.hpp"
#include <stdio.h>
#include <string>
#include <map>
#include <vector>
#include<iostream>using namespace std;
using namespace cv;
using namespace cv::ml;static void help()
{printf("\nThis sample demonstrates how to use different decision trees and forests including boosting and random trees.\n""Usage:\n\t./tree_engine [-r <response_column>] [-ts type_spec] <csv filename>\n""where -r <response_column> specified the 0-based index of the response (0 by default)\n""-ts specifies the var type spec in the form ord[n1,n2-n3,n4-n5,...]cat[m1-m2,m3,m4-m5,...]\n""<csv filename> is the name of training data file in comma-separated value format\n\n");
}static void train_and_print_errs(Ptr<StatModel> model, const Ptr<TrainData>& data)
{bool ok = model->train(data);if (!ok){printf("Training failed\n");}else{printf("train error: %f\n", model->calcError(data, false, noArray()));printf("test error: %f\n\n", model->calcError(data, true, noArray()));}
}int main(int argc, char** argv)
{if (argc < 2){help();return 0;}const char* filename = 0;int response_idx = 0;std::string typespec;for (int i = 1; i < argc; i++){if (strcmp(argv[i], "-r") == 0)sscanf(argv[++i], "%d", &response_idx);else if (strcmp(argv[i], "-ts") == 0)typespec = argv[++i];else if (argv[i][0] != '-')filename = argv[i];else{printf("Error. Invalid option %s\n", argv[i]);help();return -1;}}printf("\nReading in %s...\n\n", filename);const double train_test_split_ratio = 0.5;//加载训练数据Ptr<TrainData> data = TrainData::loadFromCSV(filename, 0, response_idx, response_idx + 1, typespec);if (data.empty()) {printf("ERROR: File %s can not be read\n", filename);return 0;}data->setTrainTestSplitRatio(train_test_split_ratio);//预测数据float test1[] = { 14.23, 1.71, 2.43, 15.6, 127, 2.8, 3.06, .28, 2.29, 5.64, 1.04, 3.92, 1065 };float test2[] = { 12.37, .94, 1.36, 10.6, 88, 1.98, .57, .28, .42, 1.95, 1.05, 1.82, 520 };float test3[] = { 12.86, 1.35, 2.32, 18, 122, 1.51, 1.25, .21, .94, 4.1, .76, 1.29, 630 };Mat test1Map(1, 13, CV_32FC1, test1);Mat test2Map(1, 13, CV_32FC1, test2);Mat test3Map(1, 13, CV_32FC1, test3);printf("============正太贝叶斯分类器================\n");//创建正态贝叶斯分类器Ptr<NormalBayesClassifier> bayes = NormalBayesClassifier::create();//训练模型train_and_print_errs(bayes, data);//保存模型bayes->save("bayes_result.xml");//读取模型,强行使用一下,为了强调这种用法,当然此处完全没必要Ptr<NormalBayesClassifier> bayes2 = NormalBayesClassifier::load<NormalBayesClassifier>("bayes_result.xml");cout << bayes2->predict(test1Map) << endl;cout << bayes2->predict(test2Map) << endl;cout << bayes2->predict(test3Map) << endl;cout << "============================================" << endl;printf("======DTREE=====\n");//创建决策树Ptr<DTrees> dtree = DTrees::create();dtree->setMaxDepth(10);    //设置决策树的最大深度dtree->setMinSampleCount(2);  //设置决策树叶子节点的最小样本数dtree->setRegressionAccuracy(0);  //设置回归精度dtree->setUseSurrogates(false);   //不使用替代分叉属性dtree->setMaxCategories(16);   //设置最大的类数量dtree->setCVFolds(0);  //设置不交叉验证dtree->setUse1SERule(false);  //不使用1SE规则dtree->setTruncatePrunedTree(false);  //不对分支进行修剪dtree->setPriors(Mat());  //设置先验概率train_and_print_errs(dtree, data);dtree->save("dtree_result.xml");//读取模型,强行使用一下,为了强调这种用法,当然此处完全没必要Ptr<DTrees> dtree2 = DTrees::load<DTrees>("dtree_result.xml");cout << dtree2->predict(test1Map) << endl;cout << dtree2->predict(test2Map) << endl;cout << dtree2->predict(test3Map) << endl;cout << "============================================" << endl;//if ((int)data->getClassLabels().total() <= 2) // regression or 2-class classification problem//{//	printf("======BOOST=====\n");//	Ptr<Boost> boost = Boost::create();//	boost->setBoostType(Boost::GENTLE);//	boost->setWeakCount(100);//	boost->setWeightTrimRate(0.95);//	boost->setMaxDepth(2);//	boost->setUseSurrogates(false);//	boost->setPriors(Mat());//	train_and_print_errs(boost, data);//}printf("======RTREES=====\n");Ptr<RTrees> rtrees = RTrees::create();rtrees->setMaxDepth(10);rtrees->setMinSampleCount(2);rtrees->setRegressionAccuracy(0);rtrees->setUseSurrogates(false);rtrees->setMaxCategories(16);rtrees->setPriors(Mat());rtrees->setCalculateVarImportance(false);rtrees->setActiveVarCount(0);rtrees->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER, 100, 0));train_and_print_errs(rtrees, data);cout << rtrees->predict(test1Map) << endl;cout << rtrees->predict(test2Map) << endl;cout << rtrees->predict(test3Map) << endl;cout << "============================================" << endl;return 0;
}

此处可以看出,对于wine数据集的分类,效果比较   rtress > dtree > normalbayes

wine数据集包含为178条数据

这篇关于机器学习-采用正态贝叶斯分类器、决策树、随机森林对wine数据集分类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/874200

相关文章

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

Java整合Protocol Buffers实现高效数据序列化实践

《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

Python实现数据可视化图表生成(适合新手入门)

《Python实现数据可视化图表生成(适合新手入门)》在数据科学和数据分析的新时代,高效、直观的数据可视化工具显得尤为重要,下面:本文主要介绍Python实现数据可视化图表生成的相关资料,文中通过... 目录前言为什么需要数据可视化准备工作基本图表绘制折线图柱状图散点图使用Seaborn创建高级图表箱线图热