python画图代码-常用备查【散点图+拟合曲线+双轴折线图】

本文主要是介绍python画图代码-常用备查【散点图+拟合曲线+双轴折线图】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

散点图

导入库

下同

import matplotlib.pyplot as plt
import pandas as pd
from io import BytesIO
import base64

准备模拟数据

# Using Chinese characters as column names
columns = ['A', 'B', 'C', 'D','E', 'F', 'G', 'H']
# Since we cannot extract the actual data from the image, we will create scatter plots with mock data.
# Please note that the values used here are randomly generated and do not correspond to any real dataset.# We'll use numpy to generate the random data
import numpy as np# Number of observations
n = 50# Mock data generation
np.random.seed(0)  # For reproducibility
mock_data = {'A': np.random.uniform(1000, 10000, n),'B': np.random.uniform(1, 100, n),'C': np.random.uniform(10, 1000, n),'D': np.random.uniform(50, 500, n),'E': np.random.uniform(10, 200, n),'F': np.random.uniform(5000, 50000, n),'G': np.random.uniform(100, 1000, n),'H': np.random.uniform(5, 100, n),'I': np.random.uniform(0, 100, n)
}# Create a DataFrame from the mock data
df_mock = pd.DataFrame(mock_data)

设置字体

plt.rcParams['font.sans-serif']=['SimHei'] #显示中文

# Create a scatter plot for each x variable against '省域CEI'
plt.style.use('grayscale')  # Use grayscale style
fig, axes = plt.subplots(4, 2, figsize=(15, 20))  # Prepare a grid for the plots
# 如果不想一次性出6个图,改上面的代码
# Flatten the axes array for easy iteration
axs = axes.flatten()# Loop through each x variable and create a scatter plot
for idx, x in enumerate(columns):axs[idx].scatter(df_mock[x], df_mock['I'], edgecolor='black')axs[idx].set_title(f'示例A-{x}', fontsize=20)axs[idx].set_xlabel(x, fontsize=15)axs[idx].set_ylabel('Y', fontsize=15)axs[idx].tick_params(axis='both', which='major', labelsize=12)axs[idx].grid(True)# Adjust layout so titles and labels don't overlap
plt.tight_layout()
plt.show()

在这里插入图片描述

散点图+拟合曲线

# Based on the new requirement, we will add a linear regression fit line to each scatter plot.
# Additionally, we will save the plots to the local filesystem.from sklearn.linear_model import LinearRegression# Create a Linear Regression model
model = LinearRegression()# Function to create scatter plot with regression line
def plot_with_fit_line(x, y, title, xlabel, ylabel):# Fit the modelmodel.fit(x[:, np.newaxis], y)# Get the linear fit linexfit = np.linspace(x.min(), x.max(), 1000)yfit = model.predict(xfit[:, np.newaxis])# Plot the dataplt.scatter(x, y, c='grey', edgecolors='black', label='Data')# Plot the fit lineplt.plot(xfit, yfit, color='black', linewidth=2, label='Fit line')# Title and labels#plt.title(title, fontsize=20)plt.xlabel(xlabel, fontsize=15)plt.ylabel(ylabel, fontsize=15)# Font size for ticksplt.xticks(fontsize=15)plt.yticks(fontsize=15)# Grid and legendplt.grid(False)#plt.legend()# Save the figureplt.savefig(f'C:/Users/12810/Desktop/结果图/{xlabel}_vs_{ylabel}.png')# 取消灰色网格背景# Show the plotplt.show()# Return the path of the saved plotreturn f'C:/Users/12810/Desktop/结果图/{xlabel}_vs_{ylabel}.png'# Paths where plots will be saved
saved_plots = []# Create and save a scatter plot with a fit line for each x variable against '省域CEI'
for col in columns:# Generate the plot and get the path where it's savedplot_path = plot_with_fit_line(df_mock[col].values, df_mock['省域CEI'].values, f"{col}与省域CEI的散点图", col, '省域CEI')# Store the pathsaved_plots.append(plot_path)# Show the paths where the plots are saved
saved_plots

在这里插入图片描述

双坐标轴-折线图

import pandas as pd
import matplotlib.pyplot as pltfrom matplotlib.font_manager import FontPropertiesdf_mock # 读取数据# Set the font properties for displaying Chinese characters
plt.rcParams['font.sans-serif']=['SimHei'] #显示中文
# Use the 'grayscale' style
plt.style.use('grayscale')# Create a new figure and a twin axis
fig, ax1 = plt.subplots()
x_lable=r'AAA'
y_lable = r'BBB'# Plot the first line on the primary y-axis
ax1.plot(df_mock.index, df_mock['A'], color='black', marker='o', label=x_lable)
ax1.set_xlabel('时间(年)')
ax1.set_ylabel(x_lable, color='black')
ax1.tick_params(axis='y', colors='black')# Rotate the x-axis labels
for label in ax1.get_xticklabels():label.set_rotation(45)label.set_fontproperties(font)# Create a second y-axis to plot the second line
ax2 = ax1.twinx()
ax2.plot(df_mock.index, df_mock["B"], color='red', marker='s', label=y_lable)
ax2.set_ylabel(y_lable, color='grey')
ax2.tick_params(axis='y', colors='grey')# Set the title and show the legend
# plt.title('双轴折线图', fontproperties=font)
ax1.legend(loc='upper left',bbox_to_anchor=(0.5, -0.30), fancybox=True, shadow=True, ncol=3)
ax2.legend(loc='upper right',bbox_to_anchor=(0.5, -0.30), fancybox=True, shadow=True, ncol=3)
# 显示图例,放置在图表外的底部中央# Finally, save the figure to a file
plt.savefig(r'C:\Users\12810\【人口与绿化】.png', bbox_inches='tight',dpi=300)
plt.show()

在这里插入图片描述

这篇关于python画图代码-常用备查【散点图+拟合曲线+双轴折线图】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/867422

相关文章

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v