深度学习代码|MSE损失的代码实现

2024-04-01 04:12

本文主要是介绍深度学习代码|MSE损失的代码实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、MSE代码手动实现
    • (一)导入相关库
    • (二)计算均方误差损失函数
    • (三)示例使用
  • 二、Pytorch中MSELoss函数的接口
    • (一)参数
    • (二)使用示例
    • (三)反向传播


一、MSE代码手动实现

(一)导入相关库

NumPy 是 Python 语言的一个第三方库,支持大量高维度数组与矩阵运算。此外,NumPy 也针对数组运算提供大量的数学函数。机器学习涉及到大量对数组的变换和运算,NumPy 就成了必不可少的工具之一。

import numpy as np

(二)计算均方误差损失函数

参数:

  • y_true:真实值的数组,可以是一维或多维
  • y_pred:预测值的数组,形状应与y_true相同

返回:

  • loss:计算得到的loss值
def mse_loss(y_true,y_pred):#计算真实值和预测值之间的差异diff=y_true-y_pred#计算差值的平方sq_diff=np.square(diff)#计算均方误差,即平方差的平均值#使用np.mean计算平均值,axis=0表示沿着第一个轴(通常是样本维度)计算loss=np.mean(sq_diff,axis=0)return loss

(三)示例使用

y_true=np.arrray([1,2,3,4])
y_pred=np.array([1.5,2.1,2.9,4.2])loss=mse_loss(y_true,y_pred)
print("MSE Loss:",loss)

二、Pytorch中MSELoss函数的接口

该函数默认用于计算两个输入对应元素差值平方和的均值。具体地,在深度学习中,可以使用该函数用来计算两个特征图的相似性。

torch.nn.MSELoss(size_average=None, reduce=None, reduction=‘mean’)

(一)参数

  • 当reduce=True时,若size_average=True,则返回一个batch中所有样本损失的均值,结果为标量。注意,对于MESLoss函数来说,首先对该batch中的所有样本损失进行逐元素均值操作,然后对得到N个值再进行均值操作即得到返回值(假设批大小为N,即该batch中共有N个样本)
  • 当reduce=True时,若size_average=False,则返回一个batch中所有样本损失的和,结果为标量。注意,对于MESLoss函数来说,首先对该batch中的所有样本损失进行逐元素求和操作,然后对得到N个值再进行求和操作即得到返回值(假设批大小为N,即该batch中共有N个样本)
  • 当reduce=False时,则size_average参数失效,即无论size_average参数为False还是True,效果都是一样的。此时,函数返回的是一个batch中每个样本的损失,结果为向量。
  • reduction参数包含了reduce和size_average参数的双重含义,这也是为什么reduce和size_average参数将在后续版本中被弃用的原因。

(二)使用示例

首先假设有三个数据样本分别经过神经网络运算,得到三个输出与其标签分别是:

y_pre = torch.Tensor([[1, 2, 3],[2, 1, 3],[3, 1, 2]])y_label = torch.Tensor([[1, 0, 0],[0, 1, 0],[0, 0, 1]])

当reduction=‘none’时,相当于reduce=False;

criterion1 = nn.MSELoss(reduction="none")
loss1 = criterion1(x, y)
print(loss1)

输出结果为:

tensor([[0., 4., 9.],
[4., 0., 9.],
[9., 1., 1.]])

当reduction=‘sum’时,相当于reduce=True且size_average=False;

criterion2 = nn.MSELoss(reduction="mean")
loss2 = criterion2(x, y)
print(loss2)

输出结果为:

tensor(4.1111)

当reduction=‘mean’时,相当于reduce=True且size_average=True;

criterion3 = nn.MSELoss(reduction="sum")
loss3 = criterion3(x, y)
print(loss3)

输出结果为:

tensor(37.)

(三)反向传播

一般在反向传播时,都是先求loss,再使用loss.backward()求loss对每个参数 w_ij和b的偏导数(也可以理解为梯度)。但是只有标量才能执行backward()函数,因此在反向传播中reduction不能设为"none"。

  • 若设置为"sum",则有Loss=loss_1+loss_2+loss_3,表示总的Loss由每个实例的loss_i构成,在通过Loss求梯度时,将每个loss_i的梯度也都考虑进去了。
  • 若设置为"mean",则相比"sum"相当于Loss变成了Loss*(1/i),这在参数更新时影响不大,因为有学习率a的存在。

如果只想在batch上做平均,可以这样写:

loss_fn = torch.nn.MSELoss(reduction="sum")
loss = loss_fn(pred, y) / pred.size(0)

参考:
手撕算法面试二,手撕MSE损失
pytorch官网介绍
【PyTorch】MSELoss的详细理解(含源代码)

这篇关于深度学习代码|MSE损失的代码实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/866178

相关文章

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg

SpringBoot整合Flowable实现工作流的详细流程

《SpringBoot整合Flowable实现工作流的详细流程》Flowable是一个使用Java编写的轻量级业务流程引擎,Flowable流程引擎可用于部署BPMN2.0流程定义,创建这些流程定义的... 目录1、流程引擎介绍2、创建项目3、画流程图4、开发接口4.1 Java 类梳理4.2 查看流程图4

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.