算法沉淀 —— 动态规划篇(简单多状态dp问题下)

2024-03-31 19:44

本文主要是介绍算法沉淀 —— 动态规划篇(简单多状态dp问题下),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

算法沉淀 —— 动态规划篇(简单多状态dp问题下)

  • 前言
  • 一、买卖股票的最佳时机含冷冻期
  • 二、买卖股票的最佳时机含手续费
  • 三、买卖股票的最佳时机 IV

前言

几乎所有的动态规划问题大致可分为以下5个步骤,后续所有问题分析都将基于此

  • 1.、状态表示:通常状态表示分为以下两种,其中更是第一种为主。

    • 以i为结尾,dp[i] 表示什么,通常为代求问题(具体依题目而定)
    • 以i为开始,dp[i]表示什么,通常为代求问题(具体依题目而定)
  • 2、状态转移方程
    *以上述的dp[i]意义为更具, 通过最近一步来分析和划分问题,由此来得到一个有关dp[i]的状态转移方程。

  • 3、dp表创建,初始化

    • 动态规划问题中,如果直接使用状态转移方程通常会伴随着越界访问等风险,所以一般需要初始化。而初始化最重要的两个注意事项便是:保证后续结果正确,不受初始值影响;下标的映射关系
    • 初始化一般分为以下两种:
      • 直接初始化开头的几个值。
      • 一维空间大小+1,下标从1开始;二维增加一行/一列
  • 4、填dp表、填表顺序:根据状态转移方程来确定填表顺序。

  • 5、确定返回值

一、买卖股票的最佳时机含冷冻期

【题目链接】:309. 买卖股票的最佳时机含冷冻期
【题目】:

 给定一个整数数组prices,其中第 prices[i] 表示第 i 天的股票价格 。​
 设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖一支股票):
 卖出股票后,你无法在第二天买入股票 (即冷冻期为 1 天)。
 注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

【示例】:

输入: prices = [1,2,3,0,2]
输出: 3
解释: 对应的交易状态为: [买入, 卖出, 冷冻期, 买入, 卖出]

【分析】:
 我们可以定义dp[i]表示第i天结束后,买卖股票的最大利润。但我们发现第i天股票分为3种状态:手中有股票、无股票、处于冷冻区。所以我们可以定义一个(n x 3)的二维数组,其中dp[i][0]表示第i天结束后,手中有股票的最大利润;dp[i][1]表示第i天结束后,手中无股票的最大利润;dp[i][2]表示第i天结束后,股票处于冷冻区的最大利润。

状态转移方程推导:
 第i天结束后,手中有股票的情况可由:i-1天结束手中有股票第i天什么都不做、i-1天无股票在第i天买入股票两种情况得到。所以可得状态状态转移方程为 dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
 第i天结束后,手中无股票的情况可由::第i-1天结束手中有股票在第i天卖掉股票、第i-1天股票处于冷冻区在第i天什么都不做两种情况得到。所以可得状态状态转移方程:dp[i][1] = max(dp[i - 1][1], dp[i - 1][2]);
 第i天结束后,股票处于冷冻区只能由第i-1天手中有股票第i天将股票卖出所得。所以可得状态状态转移方程:dp[i][2] = dp[i - 1][0] + prices[i];
在这里插入图片描述
 初始化:显然当i为0时,状态转移方程不适应,需要特殊处理。这里我们可以将第0天的买卖股票状态直接初始化好(具体参考代码)。然后从第2天开始,填dp表!!
 最后返回第n天结束后,返回手中无股票和股票处于冷冻区的最大值即可!!
【代码编写】:

class Solution {
public:int maxProfit(vector<int>& prices) {int n = prices.size();vector<vector<int>> dp(n, vector<int>(3));//初始化dp[0][0] = -prices[0];//第1天买人股票//填表for(int i = 1; i < n; i++){dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);dp[i][1] = max(dp[i - 1][1], dp[i - 1][2]);dp[i][2] = dp[i - 1][0] + prices[i];}return max(dp[n - 1][1], dp[n - 1][2]);}
};

二、买卖股票的最佳时机含手续费

【题目链接】:714. 买卖股票的最佳时机含手续费
【题目】:

 给定一个整数数组 prices,其中 prices[i]表示第 i 天的股票价格 ;整数 fee 代表了交易股票的手续费用。
 你可以无限次地完成交易,但是你每笔交易都需要付手续费。如果你已经购买了一个股票,在卖出它之前你就不能再继续购买股票了。
 返回获得利润的最大值。
 注意:这里的一笔交易指买入持有并卖出股票的整个过程,每笔交易你只需要为支付一次手续费。

【示例】:

输入:prices = [1, 3, 2, 8, 4, 9], fee = 2
输出:8
解释:能够达到的最大利润:
在此处买入 prices[0] = 1
在此处卖出 prices[3] = 8
在此处买入 prices[4] = 4
在此处卖出 prices[5] = 9
总利润: ((8 - 1) - 2) + ((9 - 4) - 2) = 8

【分析】:
 我们可以定义dp[i]表示第i天结束后,所得最大利润。但第i天可以细分为手中有无股票。所以我们可以创建一个(n x 2)的数组,其中dp[i][0]表示第i天结束后,手中还有股票,此时所得的最大利润;dp[i][1]表示第i天结束后,手中无股票,此时所得的最大利润。

状态转移方程推导:
 dp[i][0]可以由:第i-1天后手中有股票并且第i天啥都不干、第i-1天后手中无股票并且第i天买入股票,所以状态转移方程为:dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
 ;dp[i][1]可以由:第i-1天后手中无股票并且第i天啥都不干、第i-1天后手中有股票并且第i天卖出股票(此时一次交易完成,需要将费用fee减掉),所以状态转移方程为:dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i] - fee);
在这里插入图片描述

 初始化:显然当i为0时,状态转移方程错误。所以我们可以先初始化dp[0][0]、dp[0][1](即第1天结束后,股票和利润的情况,具体参考代码)。
 然后从左往右填dp表,最后返回第n天结束后手中无股票的最大值即可!!

【代码编写】:

class Solution {
public:int maxProfit(vector<int>& prices, int fee) {int n = prices.size();vector<vector<int>> dp(n, vector<int>(2));//初始化dp[0][0] = -prices[0];for(int i = 1; i < n; i++){dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i] - fee);}return dp[n - 1][1];}
};

三、买卖股票的最佳时机 IV

【题目链接】:买卖股票的最佳时机 IV
【题目】:

 给你一个整数数组 prices 和一个整数 k ,其中 prices[i] 是某支给定的股票在第 i 天的价格。
&emsp设计一个算法来计算你所能获取的最大利润。你最多可以完成 k 笔交易。也就是说,你最多可以买 k 次,卖 k 次。
&emsp注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

【示例】:

输入:k = 2, prices = [2,4,1]
输出:2
解释:在第 1 天 (股票价格 = 2) 的时候买入,在第 2 天 (股票价格 = 4) 的时候卖出,这笔交易所能获得利润 = 4-2 = 2 。

【分析】:
 我们可以定义dp[i[表示第i天结束后,在最多可以完成 k 笔交易的情况下,买卖股票的获得的最大利润。但我们发现第i天的股票状态还可以细分:手中有无股票,已经交易几次(从0~k次)。所以我们可以创建两个(n x (k + 1))的二维数组f和g:其中f[i][j]表示第i天结束后,完成j次交易,并且手中有股票时所得利润最大值;g[i][j]表示第i天结束后,完成j次交易,并且手中无股票时所得利润最大值。

状态转移方程推导:(我们定义只有当股票卖出时,交易才算完成,次数+1)
 f[i][j]可由:(第i-1天结束后,完成j次交易,并且手中有股票(即f[i-1][j]),在第i天不交易)、(第i-1天结束后,完成j次交易,并且手中无股票(即g[i-1][j]),在第i天买入股票)两种方式得到。所以状态转移方程:f[i][j] = max(f[i - 1][j], g[i - 1][j] - prices[i]);

 g[i][j]可由:(第i-1天结束后,完成j次交易,并且手中无股票(即g[i-1][j]),在第i天不交易)、(第i-1天结束后,完成j-1次交易(第i-1天完成交易,此时交易次数加1得到j次),并且手中有股票(即g[i-1][j]),在第i天卖出股票)两种方式得到。所以状态转移方程:g[i][j] = max(g[i-1][j], f[i-1][j-1] + price[i]);
细节处理:

 显然当i为0时,f的状态转移方程不适用,需初始化第1行;但对于g来说,i=0和j=0时,状态转移方程都不适用,需要初始化第一行和第一列。又因为当j=0时,对于g来说此时手中无股票且完成0次交易,没有意义。所以我们对g的状态转移方程仅需转换:

if(j >= 1)g[i][j] = max(g[i-1][j], f[i-1][j-1] + price[i]);

 此时,我们只需要初始化f和g的第一行即可。由于本体种交易次数有限制,我们应当珍惜交易此时。所以我们在第一次时,不仅需交易。此时我们仅需初始化f[0][0]、g[0][0]即可。同时为了防止第一行,d[0][0]和f[0][0]后的数据对后续填表造成影响,我们需将d表和f表中相应的值初始化INT_MIN。
但此时使用状态转移方程可能发生越界,所以我们将INTMIN改为其一半0x3f3f3f3f。
【代码编写】:

class Solution {
public:const int KNF = 0x3f3f3f3f;//INT_MAX一半int maxProfit(int k, vector<int>& prices) {int n = prices.size();vector<vector<int>> f(n, vector<int>(k + 1, -KNF));auto g = f;//初始化f[0][0] = -prices[0], g[0][0] = 0;for(int i = 1; i < n; i++)for(int j = 0; j <= k; j++){f[i][j] = max(f[i - 1][j], g[i - 1][j] - prices[i]);g[i][j] = g[i - 1][j];if(j >= 1)g[i][j] = max(g[i][j], f[i - 1][j - 1] + prices[i]);}int ret = -KNF;for(int j = 0; j <= k; j++)ret = max(ret, g[n - 1][j]);return ret;}
};

这篇关于算法沉淀 —— 动态规划篇(简单多状态dp问题下)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/865174

相关文章

IDEA和GIT关于文件中LF和CRLF问题及解决

《IDEA和GIT关于文件中LF和CRLF问题及解决》文章总结:因IDEA默认使用CRLF换行符导致Shell脚本在Linux运行报错,需在编辑器和Git中统一为LF,通过调整Git的core.aut... 目录问题描述问题思考解决过程总结问题描述项目软件安装shell脚本上git仓库管理,但拉取后,上l

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S

idea npm install很慢问题及解决(nodejs)

《ideanpminstall很慢问题及解决(nodejs)》npm安装速度慢可通过配置国内镜像源(如淘宝)、清理缓存及切换工具解决,建议设置全局镜像(npmconfigsetregistryht... 目录idea npm install很慢(nodejs)配置国内镜像源清理缓存总结idea npm in

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

idea突然报错Malformed \uxxxx encoding问题及解决

《idea突然报错Malformeduxxxxencoding问题及解决》Maven项目在切换Git分支时报错,提示project元素为描述符根元素,解决方法:删除Maven仓库中的resolv... 目www.chinasem.cn录问题解决方式总结问题idea 上的 maven China编程项目突然报错,是

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

Java发送SNMP至交换机获取交换机状态实现方式

《Java发送SNMP至交换机获取交换机状态实现方式》文章介绍使用SNMP4J库(2.7.0)通过RCF1213-MIB协议获取交换机单/多路状态,需开启SNMP支持,重点对比SNMPv1、v2c、v... 目录交换机协议SNMP库获取交换机单路状态获取交换机多路状态总结交换机协议这里使用的交换机协议为常

前端导出Excel文件出现乱码或文件损坏问题的解决办法

《前端导出Excel文件出现乱码或文件损坏问题的解决办法》在现代网页应用程序中,前端有时需要与后端进行数据交互,包括下载文件,:本文主要介绍前端导出Excel文件出现乱码或文件损坏问题的解决办法,... 目录1. 检查后端返回的数据格式2. 前端正确处理二进制数据方案 1:直接下载(推荐)方案 2:手动构造

Python绘制TSP、VRP问题求解结果图全过程

《Python绘制TSP、VRP问题求解结果图全过程》本文介绍用Python绘制TSP和VRP问题的静态与动态结果图,静态图展示路径,动态图通过matplotlib.animation模块实现动画效果... 目录一、静态图二、动态图总结【代码】python绘制TSP、VRP问题求解结果图(包含静态图与动态图