代码+视频,手动绘制logistic回归预测模型校准曲线(Calibration curve)(1)

本文主要是介绍代码+视频,手动绘制logistic回归预测模型校准曲线(Calibration curve)(1),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

校准曲线图表示的是预测值和实际值的差距,作为预测模型的重要部分,目前很多函数能绘制校准曲线。
一般分为两种,一种是通过Hosmer-Lemeshow检验,把P值分为10等分,求出每等分的预测值和实际值的差距.

在这里插入图片描述
另外一种是calibration函数重抽样绘制连续的校准图

在这里插入图片描述
今天我们来视频演示第一种,手动绘制的好处在于加深你对绘图的理解,而且能个性化的进一步处理图形。第一种绘图本质就是我们的折线图,

R语言手动绘制logistic回归预测模型校准曲线(Calibration curve)(1)

代码

library(ggplot2)
library(rms)
#公众号:零基础说科研,公众号回复:早产数据,可以获得数据
bc<-read.csv("E:/r/test/zaochan.csv",sep=',',header=TRUE)
######
bc$race<-ifelse(bc$race=="black",1,ifelse(bc$race=="white",2,3))
bc$smoke<-ifelse(bc$smoke=="nonsmoker",0,1)
bc$race<-factor(bc$race)
bc$ht<-factor(bc$ht)
bc$ui<-factor(bc$ui)
#########
fit<-glm(low ~ age + lwt + race + smoke + ptl + ht + ui + ftv,family = binomial("logit"),data = bc)
#得出预测概率
pr1 <- predict(fit,type = c("response"))#得出预测概率
p = pr1
##使用order函数对P值排序,这里注意一下,order§排的是位置
sor <- order(p)
#P值按order来排列
p <- p[sor]
#Y值也按order来排列
y = bc[, "low"]
y <- y[sor]
###把P值分为10个等分区间
groep <- cut2(p, g = 10) #来自rms包
###计算每个等分的P值和Y值
meanpred <- round(tapply(p, groep, mean), 3)
meanobs <- round(tapply(y, groep, mean), 3)
##绘图
plot(meanpred, meanobs)
###修饰一下
plot(meanpred, meanobs,xlab = "Predicted risk", ylab = "Observed risk", pch = 16, ps = 2, xlim = c(0, 1), ylim = c(0, 1), cex.lab = 1.2, cex.axis = 1.1, las = 1)
abline(0, 1, col = "grey", lwd = 1, lty = 1)
######使用PredictABEL包的plotCalibration函数来验证一下我们计算的正确性
library(PredictABEL)
plotCalibration(data = bc,cOutcome = 2,#结果在第几行就选几predRisk = pr1,groups = 10,rangeaxis = c(0,1))
#########
source("E:/r/test/ggfit.R")#gg2<-function(data,p,y,group=1,leb) y1<-bc[, "low"]plot1<-gg2(bc,pr1,y1)ggplot(plot1, aes(x=meanpred, y=meanobs)) + geom_errorbar(aes(ymin=meanobs-1.96*se, ymax=meanobs+1.96*se), width=.02)+annotate(geom = "segment", x = 0, y = 0, xend =1, yend = 1)+expand_limits(x = 0, y = 0) + scale_x_continuous(expand = c(0, 0)) + scale_y_continuous(expand = c(0, 0))+geom_point(size=3, shape=21, fill="white")+xlab("预测概率")+ylab("实际概率")gg3(bc,pr1,y1)

这篇关于代码+视频,手动绘制logistic回归预测模型校准曲线(Calibration curve)(1)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/861521

相关文章

使用Spring Cache本地缓存示例代码

《使用SpringCache本地缓存示例代码》缓存是提高应用程序性能的重要手段,通过将频繁访问的数据存储在内存中,可以减少数据库访问次数,从而加速数据读取,:本文主要介绍使用SpringCac... 目录一、Spring Cache简介核心特点:二、基础配置1. 添加依赖2. 启用缓存3. 缓存配置方案方案

MySQL的配置文件详解及实例代码

《MySQL的配置文件详解及实例代码》MySQL的配置文件是服务器运行的重要组成部分,用于设置服务器操作的各种参数,下面:本文主要介绍MySQL配置文件的相关资料,文中通过代码介绍的非常详细,需要... 目录前言一、配置文件结构1.[mysqld]2.[client]3.[mysql]4.[mysqldum

Python多线程实现大文件快速下载的代码实现

《Python多线程实现大文件快速下载的代码实现》在互联网时代,文件下载是日常操作之一,尤其是大文件,然而,网络条件不稳定或带宽有限时,下载速度会变得很慢,本文将介绍如何使用Python实现多线程下载... 目录引言一、多线程下载原理二、python实现多线程下载代码说明:三、实战案例四、注意事项五、总结引

IDEA与MyEclipse代码量统计方式

《IDEA与MyEclipse代码量统计方式》文章介绍在项目中不安装第三方工具统计代码行数的方法,分别说明MyEclipse通过正则搜索(排除空行和注释)及IDEA使用Statistic插件或调整搜索... 目录项目场景MyEclipse代码量统计IDEA代码量统计总结项目场景在项目中,有时候我们需要统计

MySQL设置密码复杂度策略的完整步骤(附代码示例)

《MySQL设置密码复杂度策略的完整步骤(附代码示例)》MySQL密码策略还可能包括密码复杂度的检查,如是否要求密码包含大写字母、小写字母、数字和特殊字符等,:本文主要介绍MySQL设置密码复杂度... 目录前言1. 使用 validate_password 插件1.1 启用 validate_passwo

MySQL实现多源复制的示例代码

《MySQL实现多源复制的示例代码》MySQL的多源复制允许一个从服务器从多个主服务器复制数据,这在需要将多个数据源汇聚到一个数据库实例时非常有用,下面就来详细的介绍一下,感兴趣的可以了解一下... 目录一、多源复制原理二、多源复制配置步骤2.1 主服务器配置Master1配置Master2配置2.2 从服

Go语言使用net/http构建一个RESTful API的示例代码

《Go语言使用net/http构建一个RESTfulAPI的示例代码》Go的标准库net/http提供了构建Web服务所需的强大功能,虽然众多第三方框架(如Gin、Echo)已经封装了很多功能,但... 目录引言一、什么是 RESTful API?二、实战目标:用户信息管理 API三、代码实现1. 用户数据

Java对接MQTT协议的完整实现示例代码

《Java对接MQTT协议的完整实现示例代码》MQTT是一个基于客户端-服务器的消息发布/订阅传输协议,MQTT协议是轻量、简单、开放和易于实现的,这些特点使它适用范围非常广泛,:本文主要介绍Ja... 目录前言前置依赖1. MQTT配置类代码解析1.1 MQTT客户端工厂1.2 MQTT消息订阅适配器1.

C++归并排序代码实现示例代码

《C++归并排序代码实现示例代码》归并排序将待排序数组分成两个子数组,分别对这两个子数组进行排序,然后将排序好的子数组合并,得到排序后的数组,:本文主要介绍C++归并排序代码实现的相关资料,需要的... 目录1 算法核心思想2 代码实现3 算法时间复杂度1 算法核心思想归并排序是一种高效的排序方式,需要用

springboot项目中集成shiro+jwt完整实例代码

《springboot项目中集成shiro+jwt完整实例代码》本文详细介绍如何在项目中集成Shiro和JWT,实现用户登录校验、token携带及接口权限管理,涉及自定义Realm、ModularRe... 目录简介目的需要的jar集成过程1.配置shiro2.创建自定义Realm2.1 LoginReal