《算法笔记》系列----质数的判断(埃氏筛法)

2024-03-30 09:52

本文主要是介绍《算法笔记》系列----质数的判断(埃氏筛法),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、朴素算法

二、埃氏筛法

1、与朴素算法对比

2、算法介绍    

3、例题即代码实现


一、朴素算法

  从素数的定义中可以知道,一个整数n要被判断为素数,需要判断n是否能被2.3.n- 1中的一个整除。只2,3..n- 1都不能整除n,n才能判定为素数,而只要有一个能整除n的数出现,n就可以判定为非素数。
        这样的判定方法没有问题,复杂度为0(n)。但是在很多题目中,判定素数只是整个算法
中的一部分,这时候0(n)的复杂度实际上有点大,需要更加快速的判定方法。注意到如果在
2 ~n-1中存在n的约数,不妨设为k,即n%k=0,那么由k*(n/k)=n可知,n/k也是n的一个约数,且k与n/k中一定满足其中一个小于等于sqrt(n)、另一个大于等于sqrt(n)其中sqr(n)为根号n。这启发我们,只需要判定n能否被2, 3,.. sqrt(n)中的一个整除(具中x表示对x向下取整),即可判定n县否为素数。这样的话时间复杂度就位o( sqrt(n))

代码如下:

bool isprime(int x){for(int i=2;i*i<=x;i++){if(x%i==0){return false;}}return true;
}

这里有个东西要注意:c++中sqrt函数是对double类型的函数,但是在实际代码中传进来的一般是一个int类型的数,因此我们在使用时要像下面这样让x乘上一个1.0

int main(){int x;cin>>x;ifprime(sqrt(1.0*x));}

二、埃氏筛法

1、与朴素算法对比

      上面这个算法在判断一个数是否是素数时时间复杂度优越,但是如果我们这个题目需要得到在这个数范围内所有的素数(素数表)时这个时间复杂度就偏大,即o(nsqrt(n))

2、算法介绍    

      因此我们要隆重引入我们新的算法埃氏筛法:

当需要生成一个给定范围内所有素数的素数表时,可以采用更高效的算法来降低时间复杂度。一种常见的方法是使用埃拉托斯特尼筛法(Sieve of Eratosthenes)

        埃氏筛法的时间复杂度O(nlog(log(n))),明显优于逐个判断每个数是否为素数的O(nsqrt(n)​)复杂度。

埃拉托斯特尼筛法的基本思想是从2开始,依次将每个素数的倍数标记为非素数,直到遍历完整个范围。剩下未被标记的数即为素数。

整理步骤如下:

  1. 初始化一个布尔数组,表示每个数是否为素数,初始值为True。
  2. 从2开始遍历到n​,对于每个素数p,将其倍数p×k(其中k>1)标记为非素数。
  3. 遍历完整个范围后,未被标记的数即为素数。

这种方法在生成素数表时能够显著减少时间复杂度,是常用的高效算法之一。

3、例题即代码实现

链接-晴问算法:https://sunnywhy.com/sfbj/5/4/205

完整ac代码:

 

#include<bits/stdc++.h>
using namespace std;
int main(){int n;cin>>n;vector<bool> isprime(n+1,true);for(int i=2;i<=n;i++){if(isprime[i]){for(int j=i+i;j<=n;j+=i){isprime[j]=false;}cout<<i<<endl;}}return 0;
}

这篇关于《算法笔记》系列----质数的判断(埃氏筛法)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/861165

相关文章

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

Go语言中nil判断的注意事项(最新推荐)

《Go语言中nil判断的注意事项(最新推荐)》本文给大家介绍Go语言中nil判断的注意事项,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1.接口变量的特殊行为2.nil的合法类型3.nil值的实用行为4.自定义类型与nil5.反射判断nil6.函数返回的

python判断文件是否存在常用的几种方式

《python判断文件是否存在常用的几种方式》在Python中我们在读写文件之前,首先要做的事情就是判断文件是否存在,否则很容易发生错误的情况,:本文主要介绍python判断文件是否存在常用的几种... 目录1. 使用 os.path.exists()2. 使用 os.path.isfile()3. 使用

Go语言如何判断两张图片的相似度

《Go语言如何判断两张图片的相似度》这篇文章主要为大家详细介绍了Go语言如何中实现判断两张图片的相似度的两种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 在介绍技术细节前,我们先来看看图片对比在哪些场景下可以用得到:图片去重:自动删除重复图片,为存储空间"瘦身"。想象你是一个

Python如何判断字符串中是否包含特殊字符并替换

《Python如何判断字符串中是否包含特殊字符并替换》这篇文章主要为大家详细介绍了如何使用Python实现判断字符串中是否包含特殊字符并使用空字符串替换掉,文中的示例代码讲解详细,感兴趣的小伙伴可以了... 目录python判断字符串中是否包含特殊字符方法一:使用正则表达式方法二:手动检查特定字符Pytho

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

判断PyTorch是GPU版还是CPU版的方法小结

《判断PyTorch是GPU版还是CPU版的方法小结》PyTorch作为当前最流行的深度学习框架之一,支持在CPU和GPU(NVIDIACUDA)上运行,所以对于深度学习开发者来说,正确识别PyTor... 目录前言为什么需要区分GPU和CPU版本?性能差异硬件要求如何检查PyTorch版本?方法1:使用命

Python如何精准判断某个进程是否在运行

《Python如何精准判断某个进程是否在运行》这篇文章主要为大家详细介绍了Python如何精准判断某个进程是否在运行,本文为大家整理了3种方法并进行了对比,有需要的小伙伴可以跟随小编一起学习一下... 目录一、为什么需要判断进程是否存在二、方法1:用psutil库(推荐)三、方法2:用os.system调用

Python实现特殊字符判断并去掉非字母和数字的特殊字符

《Python实现特殊字符判断并去掉非字母和数字的特殊字符》在Python中,可以通过多种方法来判断字符串中是否包含非字母、数字的特殊字符,并将这些特殊字符去掉,本文为大家整理了一些常用的,希望对大家... 目录1. 使用正则表达式判断字符串中是否包含特殊字符去掉字符串中的特殊字符2. 使用 str.isa