Logistic回归代价函数的数学推导及实现

2024-03-30 00:18

本文主要是介绍Logistic回归代价函数的数学推导及实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

logistic回归的代价函数形式如下:
J ( θ ) = − 1 m [ ∑ i = 1 m y ( i ) log ⁡ h θ ( x ( i ) ) + ( 1 − y ( i ) ) log ⁡ ( 1 − h θ ( x ( i ) ) ) ] J(\theta) = -\frac{1}{m}\left[\sum_{i=1}^{m}y^{(i)}\log h_\theta(x^{(i)}) + (1 - y^{(i)})\log (1 - h_\theta(x^{(i)}))\right] J(θ)=m1[i=1my(i)loghθ(x(i))+(1y(i))log(1hθ(x(i)))]

可是这又是怎么来的呢? 答:最大似然估计计算出来的

1.最大似然估计

我们先来简单的回顾一下最大似然估计(Maximum likelihood estimation),详细戳此处,见参数估计

所谓参数估计就是:对未知参数 θ \theta θ进行估计时,在参数可能的取值范围内选取,使“样本获得此观测值 x 1 , x 2 . . . , x n x_1,x_2...,x_n x1,x2...,xn"的概率最大的参数 θ ^ \hat{\theta} θ^作为 θ \theta θ的估计,这样选定的 θ ^ \hat{\theta} θ^有利于 x 1 , x 2 . . . , x n x_1,x_2...,x_n x1,x2...,xn"的出现。也就是说在已知数据集(结果)和模型(分布函数)的情况下,估计出最适合该模型的参数。

举个例子:

假设你有一枚硬币,随机抛10次;现在的结果是6次正面。我们都知道,抛一枚硬币,正面朝上和反面朝上的概率均是θ=0.5;但前提时,这是在大量的实验(抛硬币)情况下才有的结论。那在我们这个情况下,参数θ到底取何值时才能使得出现6次正面的肯能性最大呢?

我们知道,抛硬币是符合二项分布B(n,p),也就是说我们现在已知样本结果以及函数分布,估计出使得该结果最大可能出现的参数 θ ^ \hat{\theta} θ^。则有:
L = P ( X = 6 ) = C 10 6 θ ^ 6 ( 1 − θ ^ ) 4 \mathrm{L}=P(X=6)=\mathrm{C_{10}^6}\hat{\theta}^6(1-\hat{\theta})^4 L=P(X=6)=C106θ^6(1θ^)4

而我们接下来要做的就是求当 L \mathrm{L} L取最大值时, θ ^ \hat{\theta} θ^的值。我们很容易求得当 θ ^ = 0.6 \hat{\theta}=0.6 θ^=0.6 L \mathrm{L} L取得最大值0.25;而当 θ ^ = 0.5 \hat{\theta}=0.5 θ^=0.5时, L = 0.21 \mathrm{L}=0.21 L=0.21

再假设你有一枚硬币,随机抛10次;现在的结果是7次正面。则此时使得该结果最大可能性出现参数 θ ^ \hat{\theta} θ^又是多少呢?按照上面的方法我们很容易求得当 θ ^ = 0.7 \hat{\theta}=0.7 θ^=0.7时可能性最大。

再举个例子:

明显,在Logistic回归中,所有样本点也服从二项分布;设有 x 1 , x 2 , x 3 x_1,x_2,x_3 x1,x2,x3三个样本点,其类标为 1 , 1 , 0 1,1,0 1,1,0;同时设样本点为1的概率为 P = h θ ( x ) P=h_{\theta}(x) P=hθ(x),那么当 P P P等于多少时,其结果才最可能出现 1 , 1 , 0 1,1,0 1,1,0呢?于是问题就变成最大化:
P ∗ P ( 1 − P ) = h θ ( x 1 ) ∗ h θ ( x 2 ) ∗ ( 1 − h θ ( x 3 ) ) P*P(1-P)=h_{\theta}(x_1)*h_{\theta}(x_2)*(1-h_{\theta}(x_3)) PP(1P)=hθ(x1)hθ(x2)(1hθ(x

这篇关于Logistic回归代价函数的数学推导及实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/860036

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配

通过React实现页面的无限滚动效果

《通过React实现页面的无限滚动效果》今天我们来聊聊无限滚动这个现代Web开发中不可或缺的技术,无论你是刷微博、逛知乎还是看脚本,无限滚动都已经渗透到我们日常的浏览体验中,那么,如何优雅地实现它呢?... 目录1. 早期的解决方案2. 交叉观察者:IntersectionObserver2.1 Inter