Logistic回归代价函数的数学推导及实现

2024-03-30 00:18

本文主要是介绍Logistic回归代价函数的数学推导及实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

logistic回归的代价函数形式如下:
J ( θ ) = − 1 m [ ∑ i = 1 m y ( i ) log ⁡ h θ ( x ( i ) ) + ( 1 − y ( i ) ) log ⁡ ( 1 − h θ ( x ( i ) ) ) ] J(\theta) = -\frac{1}{m}\left[\sum_{i=1}^{m}y^{(i)}\log h_\theta(x^{(i)}) + (1 - y^{(i)})\log (1 - h_\theta(x^{(i)}))\right] J(θ)=m1[i=1my(i)loghθ(x(i))+(1y(i))log(1hθ(x(i)))]

可是这又是怎么来的呢? 答:最大似然估计计算出来的

1.最大似然估计

我们先来简单的回顾一下最大似然估计(Maximum likelihood estimation),详细戳此处,见参数估计

所谓参数估计就是:对未知参数 θ \theta θ进行估计时,在参数可能的取值范围内选取,使“样本获得此观测值 x 1 , x 2 . . . , x n x_1,x_2...,x_n x1,x2...,xn"的概率最大的参数 θ ^ \hat{\theta} θ^作为 θ \theta θ的估计,这样选定的 θ ^ \hat{\theta} θ^有利于 x 1 , x 2 . . . , x n x_1,x_2...,x_n x1,x2...,xn"的出现。也就是说在已知数据集(结果)和模型(分布函数)的情况下,估计出最适合该模型的参数。

举个例子:

假设你有一枚硬币,随机抛10次;现在的结果是6次正面。我们都知道,抛一枚硬币,正面朝上和反面朝上的概率均是θ=0.5;但前提时,这是在大量的实验(抛硬币)情况下才有的结论。那在我们这个情况下,参数θ到底取何值时才能使得出现6次正面的肯能性最大呢?

我们知道,抛硬币是符合二项分布B(n,p),也就是说我们现在已知样本结果以及函数分布,估计出使得该结果最大可能出现的参数 θ ^ \hat{\theta} θ^。则有:
L = P ( X = 6 ) = C 10 6 θ ^ 6 ( 1 − θ ^ ) 4 \mathrm{L}=P(X=6)=\mathrm{C_{10}^6}\hat{\theta}^6(1-\hat{\theta})^4 L=P(X=6)=C106θ^6(1θ^)4

而我们接下来要做的就是求当 L \mathrm{L} L取最大值时, θ ^ \hat{\theta} θ^的值。我们很容易求得当 θ ^ = 0.6 \hat{\theta}=0.6 θ^=0.6 L \mathrm{L} L取得最大值0.25;而当 θ ^ = 0.5 \hat{\theta}=0.5 θ^=0.5时, L = 0.21 \mathrm{L}=0.21 L=0.21

再假设你有一枚硬币,随机抛10次;现在的结果是7次正面。则此时使得该结果最大可能性出现参数 θ ^ \hat{\theta} θ^又是多少呢?按照上面的方法我们很容易求得当 θ ^ = 0.7 \hat{\theta}=0.7 θ^=0.7时可能性最大。

再举个例子:

明显,在Logistic回归中,所有样本点也服从二项分布;设有 x 1 , x 2 , x 3 x_1,x_2,x_3 x1,x2,x3三个样本点,其类标为 1 , 1 , 0 1,1,0 1,1,0;同时设样本点为1的概率为 P = h θ ( x ) P=h_{\theta}(x) P=hθ(x),那么当 P P P等于多少时,其结果才最可能出现 1 , 1 , 0 1,1,0 1,1,0呢?于是问题就变成最大化:
P ∗ P ( 1 − P ) = h θ ( x 1 ) ∗ h θ ( x 2 ) ∗ ( 1 − h θ ( x 3 ) ) P*P(1-P)=h_{\theta}(x_1)*h_{\theta}(x_2)*(1-h_{\theta}(x_3)) PP(1P)=hθ(x1)hθ(x2)(1hθ(x

这篇关于Logistic回归代价函数的数学推导及实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/860036

相关文章

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

在Linux中改变echo输出颜色的实现方法

《在Linux中改变echo输出颜色的实现方法》在Linux系统的命令行环境下,为了使输出信息更加清晰、突出,便于用户快速识别和区分不同类型的信息,常常需要改变echo命令的输出颜色,所以本文给大家介... 目python录在linux中改变echo输出颜色的方法技术背景实现步骤使用ANSI转义码使用tpu

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

golang版本升级如何实现

《golang版本升级如何实现》:本文主要介绍golang版本升级如何实现问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录golanwww.chinasem.cng版本升级linux上golang版本升级删除golang旧版本安装golang最新版本总结gola

MySQL 中的 CAST 函数详解及常见用法

《MySQL中的CAST函数详解及常见用法》CAST函数是MySQL中用于数据类型转换的重要函数,它允许你将一个值从一种数据类型转换为另一种数据类型,本文给大家介绍MySQL中的CAST... 目录mysql 中的 CAST 函数详解一、基本语法二、支持的数据类型三、常见用法示例1. 字符串转数字2. 数字

SpringBoot中SM2公钥加密、私钥解密的实现示例详解

《SpringBoot中SM2公钥加密、私钥解密的实现示例详解》本文介绍了如何在SpringBoot项目中实现SM2公钥加密和私钥解密的功能,通过使用Hutool库和BouncyCastle依赖,简化... 目录一、前言1、加密信息(示例)2、加密结果(示例)二、实现代码1、yml文件配置2、创建SM2工具

Mysql实现范围分区表(新增、删除、重组、查看)

《Mysql实现范围分区表(新增、删除、重组、查看)》MySQL分区表的四种类型(范围、哈希、列表、键值),主要介绍了范围分区的创建、查询、添加、删除及重组织操作,具有一定的参考价值,感兴趣的可以了解... 目录一、mysql分区表分类二、范围分区(Range Partitioning1、新建分区表:2、分