深度学习故障诊断实战 | 数据预处理之基于滑动窗的数据样本增强

本文主要是介绍深度学习故障诊断实战 | 数据预处理之基于滑动窗的数据样本增强,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

本期给大家分享介绍如何基于滑动窗方法进行数据样本增强

背景

深度学习模型训练需要大量的样本。在故障诊断领域,每个类别大都会达到300个样本。但是在实际公开数据集中,以CWRU数据集为例,每个类别只有24组数据,这明显是不够的。
下图以外圈为例,只有24组数据:
在这里插入图片描述
因此需要想办法扩充样本。目前大多数是通过滑动窗方法来扩充样本。例如1组10s长的数据,我每隔0.1s划分1个数据,就可以得到100个子样本。

滑动窗方法介绍

在这里插入图片描述
为增加样本数量,采用了基于滑动窗方法的数据增强方法。数据增强示意图如上图所示,假设一个一维原始时域信号的总样本点数为 L L L,用长度为 L t L_t Lt 的窗口框住的样本为第 1 个子样本,每生成一个子样本后,窗口向前移动 L s L_s Ls 个样本点数长度并框住第 2 个子样本,依次进行生成 n s n_s ns 个子样本。 L s L_s Ls 其计算公式如下:
L s = ⌊ L − L t n s ⌋ L_{\mathrm{s}}=\left\lfloor\frac{L-L_{\mathrm{t}}}{n_{\mathrm{s}}}\right\rfloor Ls=nsLLt

式中 ⌊ ⌋ \left\lfloor\right\rfloor 是向上取整符号。
窗口长度 L t L_t Lt 选择原则:至少包含1个旋转周期长度,4-5个周期为佳。

代码示例

这里以CWRU"1750_12k_0.021-OuterRace3.mat"数据为例。建议使用jupyter notebook

##========导入包========##
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib import rcParamsconfig = {"font.family": 'serif', # 衬线字体"font.size": 14, # 相当于小四大小"font.serif": ['SimSun'], # 宋体"mathtext.fontset": 'stix', # matplotlib渲染数学字体时使用的字体,和Times New Roman差别不大'axes.unicode_minus': False # 处理负号,即-号
}
rcParams.update(config)
##========读取数据========##
def data_read(file_path):""":fun: 读取cwru mat格式数据:param file_path: .mat文件路径  eg: r'D:.../01_示例数据/1750_12k_0.021-OuterRace3.mat':return accl_data: 读取到的加速度数据"""import scipy.io as sciodata = scio.loadmat(file_path)  # 加载mat数据data_key_list = list(data.keys())  # mat文件为字典类型,将key变为list类型accl_key = data_key_list[3]  # mat文件为字典类型,其加速度列在key_list的第4个accl_data = data[accl_key].flatten()  # 获取加速度信号,并展成1维数据accl_data = (accl_data-np.mean(accl_data))/np.std(accl_data) #Z-score标准化数据集return accl_data
##========绘制时域信号图========##
def plt_time_domain(arr, fs=12000, ylabel='Amp(mg)', title='原始数据时域图', img_save_path=None, vline=None, hline=None, xlim=None):""":fun: 绘制时域图模板:param arr: 输入一维数组数据:param fs: 采样频率:param ylabel: y轴标签:param title: 图标题:return: None"""import matplotlib.pyplot as pltplt.rcParams['font.sans-serif'] = ['SimHei']  # 显示中文plt.rcParams['axes.unicode_minus'] = False  # 显示负号font = {'family': 'Times New Roman', 'size': '20', 'color': '0.5', 'weight': 'bold'}plt.figure(figsize=(12,4))length = len(arr)t = np.linspace(0, length/fs, length)plt.plot(t, arr, c='g')plt.xlabel('t(s)')plt.ylabel(ylabel)plt.title(title)if vline:plt.vlines(x=vline, ymin=np.min(arr), ymax=np.max(arr), linestyle='--', colors='r')if hline:plt.hlines(y=hline, xmin=np.min(t), xmax=np.max(t), linestyle=':', colors='y')if xlim: # 图片横坐标是否设置xlimplt.xlim(0, xlim)  #===保存图片====#if img_save_path:plt.savefig(img_save_path, dpi=500, bbox_inches = 'tight')plt.show()
##========绘制时域信号图========##
file_path = r'D:/22-学习记录/01_自己学习积累/02_基于滑动窗方法划分数据集/01_示例数据/1750_12k_0.021-OuterRace3.mat'   # cwru数据.mat文件路径
fs = 12000    # 采样率12000Hz
fr = 1750     # 转速1750rpm
num_per_ratation = 60/1750 * fs
accl_data = data_read(file_path)   # 读取加速度数据
plt_time_domain(accl_data)         # 绘制时域图
print('数据点个数为:', len(accl_data))
print('每转1圈包含点数:', num_per_ratation)

输出结果:
在这里插入图片描述

数据点个数为: 122281
每转1圈包含点数: 411.42857142857144
##========通过滑动窗口方法增强样本========##
def data_spilt(data, num_2_generate=20, each_subdata_length=1024):""":Desription:  将数据分割成n个小块。输入数据data采样点数是400000,分成100个子样本数据,每个子样本数据就是4000个数据点:param data:  要输入的数据:param num_2_generate:  要生成的子样本数量:param each_subdata_length: 每个子样本长度:return spilt_datalist: 分割好的数据,类型为2维list"""data = list(data)total_length = len(data)start_num = 0   # 子样本起始值end_num = each_subdata_length  # 子样本终止值step_length = int((total_length - each_subdata_length) / (num_2_generate - 1))  # step_length: 向前移动长度i = 1spilt_datalist = []while i <= num_2_generate:each_data = data[start_num: end_num]each_data = (each_data-np.mean(each_data))/(np.std(each_data)) # 做Z-score归一化spilt_datalist.append(each_data)start_num = 0 + i * step_length;end_num = each_subdata_length + i * step_lengthi = i + 1spilt_data_arr = np.array(spilt_datalist)return spilt_data_arr
spilt_data_arr = data_spilt(data=accl_data, each_subdata_length=1024, num_2_generate=50)
print(spilt_data_arr)
print('划分数据样本的维度为:',spilt_data_arr.shape)
# 输出结果
[[-0.53912541  0.1241063   0.62763801 ... -0.31089743  0.15986003-0.70478437][-0.76625967 -0.90941739 -0.45229575 ... -0.89897241 -0.27165898-0.02220819][-0.95815651 -0.92246646 -1.75344986 ...  1.59903578  0.906053920.08934654]...[-0.99252616 -0.44633003  0.72570346 ... -0.7488478   2.352999450.07193225][ 0.89678044  0.56380553  1.10132216 ... -1.45485483 -0.63490413-0.65809345][-0.40335141 -0.75221082 -0.90351645 ... -3.03949526  0.597549655.42676878]]
划分数据样本的维度为: (50, 1024)

大功告成,1个数据经过滑动窗方法划分得到了50个样本(每个子样本长度1024),那24个数据增大到1200个样本了。

这篇关于深度学习故障诊断实战 | 数据预处理之基于滑动窗的数据样本增强的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/858060

相关文章

Java注解之超越Javadoc的元数据利器详解

《Java注解之超越Javadoc的元数据利器详解》本文将深入探讨Java注解的定义、类型、内置注解、自定义注解、保留策略、实际应用场景及最佳实践,无论是初学者还是资深开发者,都能通过本文了解如何利用... 目录什么是注解?注解的类型内置注编程解自定义注解注解的保留策略实际用例最佳实践总结在 Java 编程

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Spring 请求之传递 JSON 数据的操作方法

《Spring请求之传递JSON数据的操作方法》JSON就是一种数据格式,有自己的格式和语法,使用文本表示一个对象或数组的信息,因此JSON本质是字符串,主要负责在不同的语言中数据传递和交换,这... 目录jsON 概念JSON 语法JSON 的语法JSON 的两种结构JSON 字符串和 Java 对象互转