深度学习故障诊断实战 | 数据预处理之基于滑动窗的数据样本增强

本文主要是介绍深度学习故障诊断实战 | 数据预处理之基于滑动窗的数据样本增强,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

本期给大家分享介绍如何基于滑动窗方法进行数据样本增强

背景

深度学习模型训练需要大量的样本。在故障诊断领域,每个类别大都会达到300个样本。但是在实际公开数据集中,以CWRU数据集为例,每个类别只有24组数据,这明显是不够的。
下图以外圈为例,只有24组数据:
在这里插入图片描述
因此需要想办法扩充样本。目前大多数是通过滑动窗方法来扩充样本。例如1组10s长的数据,我每隔0.1s划分1个数据,就可以得到100个子样本。

滑动窗方法介绍

在这里插入图片描述
为增加样本数量,采用了基于滑动窗方法的数据增强方法。数据增强示意图如上图所示,假设一个一维原始时域信号的总样本点数为 L L L,用长度为 L t L_t Lt 的窗口框住的样本为第 1 个子样本,每生成一个子样本后,窗口向前移动 L s L_s Ls 个样本点数长度并框住第 2 个子样本,依次进行生成 n s n_s ns 个子样本。 L s L_s Ls 其计算公式如下:
L s = ⌊ L − L t n s ⌋ L_{\mathrm{s}}=\left\lfloor\frac{L-L_{\mathrm{t}}}{n_{\mathrm{s}}}\right\rfloor Ls=nsLLt

式中 ⌊ ⌋ \left\lfloor\right\rfloor 是向上取整符号。
窗口长度 L t L_t Lt 选择原则:至少包含1个旋转周期长度,4-5个周期为佳。

代码示例

这里以CWRU"1750_12k_0.021-OuterRace3.mat"数据为例。建议使用jupyter notebook

##========导入包========##
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib import rcParamsconfig = {"font.family": 'serif', # 衬线字体"font.size": 14, # 相当于小四大小"font.serif": ['SimSun'], # 宋体"mathtext.fontset": 'stix', # matplotlib渲染数学字体时使用的字体,和Times New Roman差别不大'axes.unicode_minus': False # 处理负号,即-号
}
rcParams.update(config)
##========读取数据========##
def data_read(file_path):""":fun: 读取cwru mat格式数据:param file_path: .mat文件路径  eg: r'D:.../01_示例数据/1750_12k_0.021-OuterRace3.mat':return accl_data: 读取到的加速度数据"""import scipy.io as sciodata = scio.loadmat(file_path)  # 加载mat数据data_key_list = list(data.keys())  # mat文件为字典类型,将key变为list类型accl_key = data_key_list[3]  # mat文件为字典类型,其加速度列在key_list的第4个accl_data = data[accl_key].flatten()  # 获取加速度信号,并展成1维数据accl_data = (accl_data-np.mean(accl_data))/np.std(accl_data) #Z-score标准化数据集return accl_data
##========绘制时域信号图========##
def plt_time_domain(arr, fs=12000, ylabel='Amp(mg)', title='原始数据时域图', img_save_path=None, vline=None, hline=None, xlim=None):""":fun: 绘制时域图模板:param arr: 输入一维数组数据:param fs: 采样频率:param ylabel: y轴标签:param title: 图标题:return: None"""import matplotlib.pyplot as pltplt.rcParams['font.sans-serif'] = ['SimHei']  # 显示中文plt.rcParams['axes.unicode_minus'] = False  # 显示负号font = {'family': 'Times New Roman', 'size': '20', 'color': '0.5', 'weight': 'bold'}plt.figure(figsize=(12,4))length = len(arr)t = np.linspace(0, length/fs, length)plt.plot(t, arr, c='g')plt.xlabel('t(s)')plt.ylabel(ylabel)plt.title(title)if vline:plt.vlines(x=vline, ymin=np.min(arr), ymax=np.max(arr), linestyle='--', colors='r')if hline:plt.hlines(y=hline, xmin=np.min(t), xmax=np.max(t), linestyle=':', colors='y')if xlim: # 图片横坐标是否设置xlimplt.xlim(0, xlim)  #===保存图片====#if img_save_path:plt.savefig(img_save_path, dpi=500, bbox_inches = 'tight')plt.show()
##========绘制时域信号图========##
file_path = r'D:/22-学习记录/01_自己学习积累/02_基于滑动窗方法划分数据集/01_示例数据/1750_12k_0.021-OuterRace3.mat'   # cwru数据.mat文件路径
fs = 12000    # 采样率12000Hz
fr = 1750     # 转速1750rpm
num_per_ratation = 60/1750 * fs
accl_data = data_read(file_path)   # 读取加速度数据
plt_time_domain(accl_data)         # 绘制时域图
print('数据点个数为:', len(accl_data))
print('每转1圈包含点数:', num_per_ratation)

输出结果:
在这里插入图片描述

数据点个数为: 122281
每转1圈包含点数: 411.42857142857144
##========通过滑动窗口方法增强样本========##
def data_spilt(data, num_2_generate=20, each_subdata_length=1024):""":Desription:  将数据分割成n个小块。输入数据data采样点数是400000,分成100个子样本数据,每个子样本数据就是4000个数据点:param data:  要输入的数据:param num_2_generate:  要生成的子样本数量:param each_subdata_length: 每个子样本长度:return spilt_datalist: 分割好的数据,类型为2维list"""data = list(data)total_length = len(data)start_num = 0   # 子样本起始值end_num = each_subdata_length  # 子样本终止值step_length = int((total_length - each_subdata_length) / (num_2_generate - 1))  # step_length: 向前移动长度i = 1spilt_datalist = []while i <= num_2_generate:each_data = data[start_num: end_num]each_data = (each_data-np.mean(each_data))/(np.std(each_data)) # 做Z-score归一化spilt_datalist.append(each_data)start_num = 0 + i * step_length;end_num = each_subdata_length + i * step_lengthi = i + 1spilt_data_arr = np.array(spilt_datalist)return spilt_data_arr
spilt_data_arr = data_spilt(data=accl_data, each_subdata_length=1024, num_2_generate=50)
print(spilt_data_arr)
print('划分数据样本的维度为:',spilt_data_arr.shape)
# 输出结果
[[-0.53912541  0.1241063   0.62763801 ... -0.31089743  0.15986003-0.70478437][-0.76625967 -0.90941739 -0.45229575 ... -0.89897241 -0.27165898-0.02220819][-0.95815651 -0.92246646 -1.75344986 ...  1.59903578  0.906053920.08934654]...[-0.99252616 -0.44633003  0.72570346 ... -0.7488478   2.352999450.07193225][ 0.89678044  0.56380553  1.10132216 ... -1.45485483 -0.63490413-0.65809345][-0.40335141 -0.75221082 -0.90351645 ... -3.03949526  0.597549655.42676878]]
划分数据样本的维度为: (50, 1024)

大功告成,1个数据经过滑动窗方法划分得到了50个样本(每个子样本长度1024),那24个数据增大到1200个样本了。

这篇关于深度学习故障诊断实战 | 数据预处理之基于滑动窗的数据样本增强的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/858060

相关文章

MySQL 多列 IN 查询之语法、性能与实战技巧(最新整理)

《MySQL多列IN查询之语法、性能与实战技巧(最新整理)》本文详解MySQL多列IN查询,对比传统OR写法,强调其简洁高效,适合批量匹配复合键,通过联合索引、分批次优化提升性能,兼容多种数据库... 目录一、基础语法:多列 IN 的两种写法1. 直接值列表2. 子查询二、对比传统 OR 的写法三、性能分析

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

PowerShell中15个提升运维效率关键命令实战指南

《PowerShell中15个提升运维效率关键命令实战指南》作为网络安全专业人员的必备技能,PowerShell在系统管理、日志分析、威胁检测和自动化响应方面展现出强大能力,下面我们就来看看15个提升... 目录一、PowerShell在网络安全中的战略价值二、网络安全关键场景命令实战1. 系统安全基线核查

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

Java MQTT实战应用

《JavaMQTT实战应用》本文详解MQTT协议,涵盖其发布/订阅机制、低功耗高效特性、三种服务质量等级(QoS0/1/2),以及客户端、代理、主题的核心概念,最后提供Linux部署教程、Sprin... 目录一、MQTT协议二、MQTT优点三、三种服务质量等级四、客户端、代理、主题1. 客户端(Clien