七月论文审稿GPT第4版:通过paper-review数据集微调Mixtral-8x7b

2024-03-29 06:36

本文主要是介绍七月论文审稿GPT第4版:通过paper-review数据集微调Mixtral-8x7b,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

模型训练

Mixtral-8x7b地址:魔搭社区

GitHub: hiyouga/LLaMA-Factory: Unify Efficient Fine-tuning of 100+ LLMs (github.com)

环境配置

git clone https://github.com/hiyouga/LLaMA-Factory.git
conda create -n llama_factory python=3.10
conda activate llama_factory
cd /root/path/LLaMA-Factory
pip install -r requirements.txt

有些得单独版本对齐,本人使用的是cuda11.8

pip install torch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 --index-url https://download.pytorch.org/whl/cu118
pip install bitsandbytes==0.41.3
# 下载对应版本 https://github.com/Dao-AILab/flash-attention/releases
pip install flash_attn-2.5.2+cu118torch2.1cxx11abiFALSE-cp310-cp310-linux_x86_64.whl

训练代码

python src/train_bash.py \--stage sft \--do_train True \--model_name_or_path /root/weights/Mixtral-8x7B-Instruct-v0.1 \--finetuning_type lora \--quantization_bit 4 \--template mistral \--flash_attn True \--dataset_dir data \--dataset paper_review_data \--cutoff_len 12288 \--learning_rate 5e-05 \--num_train_epochs 3.0 \--max_samples 1000000 \--per_device_train_batch_size 16 \--gradient_accumulation_steps 1 \--lr_scheduler_type cosine \--max_grad_norm 0.3 \--logging_steps 10 \--warmup_steps 0 \--lora_rank 128 \--save_steps 1000 \--lora_dropout 0.05 \--lora_target q_proj,o_proj,k_proj,v_proj,down_proj,gate_proj,up_proj \--output_dir saves/Mixtral-8x7B-Chat/lora/train_2024-03-23 \--fp16 True \--plot_loss True

模型推理

部署API接口

这里使用lora执行src/api_demo.py时会出现一个问题:

NotImplementedError: Cannot copy out of meta tensor; no data! · Issue #2940 · hiyouga/LLaMA-Factory (github.com)

解决方案:训练时使用了--quantization_bit 4 和 --flash_attn True,这里也要使用统一的才行。

CUDA_VISIBLE_DEVICES=0 API_PORT=8000 python src/api_demo.py \--model_name_or_path /root/weights/Mixtral-8x7B-Instruct-v0.1 \--adapter_name_or_path /root/path/saves/Mixtral-8x7B-Chat/lora/train_train_2024-03-23 \--template mistral \--finetuning_type lora \--quantization_bit 4 \--flash_attn True

推理所需显存为34318MiB

调用API接口

更多见七月的《大模型商用项目之审稿GPT微调实战》

这篇关于七月论文审稿GPT第4版:通过paper-review数据集微调Mixtral-8x7b的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/857868

相关文章

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Spring 请求之传递 JSON 数据的操作方法

《Spring请求之传递JSON数据的操作方法》JSON就是一种数据格式,有自己的格式和语法,使用文本表示一个对象或数组的信息,因此JSON本质是字符串,主要负责在不同的语言中数据传递和交换,这... 目录jsON 概念JSON 语法JSON 的语法JSON 的两种结构JSON 字符串和 Java 对象互转

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

SpringBoot使用GZIP压缩反回数据问题

《SpringBoot使用GZIP压缩反回数据问题》:本文主要介绍SpringBoot使用GZIP压缩反回数据问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot使用GZIP压缩反回数据1、初识gzip2、gzip是什么,可以干什么?3、Spr