用Python机器学习模型预测世界杯结果靠谱吗?

2024-03-29 01:44

本文主要是介绍用Python机器学习模型预测世界杯结果靠谱吗?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

看到kaggle、medium上有不少人用球队的历史数据来进行建模预测,比如用到泊松分布、决策树、逻辑回归等算法,很大程度上能反映强者恒强的现象,比如巴西、英格兰等大概率能进8强,就像高考模拟考试成绩越好,大概率高考也会考得好。

这个和人脑的预测是类似的,建立在你看了足够多的球赛,对每一个国家队、球员、教练、打法等都了如指掌,你才能有充分的判断依据。而且你还不能带有主观的倾向,意大利球迷肯定笃定意大利能夺冠,但他们在预选赛就被淘汰了。

但是阿根廷输沙特、德国输日本这样的黑天鹅事件,不管是AI还是人脑都是没法预测的,否则真成预言者了。买阿根廷、德国赢的人其实是选择了大概率事件,但并没有发生,他们的决策其实是对的。

因为世界杯比赛有很多变动因素,比如裁判规则、球员伤退、排兵布阵,甚至当地环境、食宿也都会有影响,所以在进行AI预测的时候,需要有很多维度的数据进行综合分析,单单从球队的历史成绩来判断,肯定是对准确率会有影响。

这其实是有贝叶斯定理的逻辑在里面,大胆假设,小心求证。

说了一大堆,还没讲如何用AI来预测。我前几天在kaggle看到过一个博主用了GBM梯度提升算法,它通过求损失函数在梯度方向下降的方法,层层改进。

大概描述下步骤:

1、数据准备。

该项目用了【FIFA 1992-2022世界排名】、【1872-2022国家队比赛结果】两个数据集。通过数据预处理对两个数据源进行连接

2、特征工程。

列出对预测比赛结果有影响的特征字段,共37个。特征选取主要根据历史经验、直觉判断,比如过去的比赛积分、过去的进球和损失、比赛的重要性、球队排名、团队排名提升等等。

接着要对各个特征进行相关性检测,判断对预测是否有帮助,如果没有帮助的特征则直接剔除。最后留下11个最重要的特征,用来建模分析。

3、建立模型。

数据处理了,接下来是通过机器学习模型对数据进行训练,然后得出预测结果。

这里用了梯度提升和决策树两个算法,最终选recall最高的,博主测试后选择了梯度提升算法。

算法具体使用操作方法如下:

4、预测世界杯比赛。

搭建好模型,就可以把世界比赛的对阵数据放到模型里进行预测。最终算出来小组赛、十六强赛、八强赛、四强赛、总决赛的得分情况。

从目前看,预测结果其实还是复制历史经验,小组出线情况基本和世界排名情况一致,没有超乎人的经验范围。对于黑马、黑天鹅并没有什么预测能力。

其他预测结果就不一一展示了,哦,最后好像预测是巴西夺冠概率较大。

总之,AI预测世界杯其实是对历史数据的归纳总结,而且完全依赖数据的喂养,能给出相对概率。

这和人的直觉一样,你觉得巴西会夺冠,肯定有一些过往的事实验证了你的直觉,不然就是瞎猜了。

这篇关于用Python机器学习模型预测世界杯结果靠谱吗?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/857268

相关文章

Python+FFmpeg实现视频自动化处理的完整指南

《Python+FFmpeg实现视频自动化处理的完整指南》本文总结了一套在Python中使用subprocess.run调用FFmpeg进行视频自动化处理的解决方案,涵盖了跨平台硬件加速、中间素材处理... 目录一、 跨平台硬件加速:统一接口设计1. 核心映射逻辑2. python 实现代码二、 中间素材处

python中的flask_sqlalchemy的使用及示例详解

《python中的flask_sqlalchemy的使用及示例详解》文章主要介绍了在使用SQLAlchemy创建模型实例时,通过元类动态创建实例的方式,并说明了如何在实例化时执行__init__方法,... 目录@orm.reconstructorSQLAlchemy的回滚关联其他模型数据库基本操作将数据添

Python实现快速扫描目标主机的开放端口和服务

《Python实现快速扫描目标主机的开放端口和服务》这篇文章主要为大家详细介绍了如何使用Python编写一个功能强大的端口扫描器脚本,实现快速扫描目标主机的开放端口和服务,感兴趣的小伙伴可以了解下... 目录功能介绍场景应用1. 网络安全审计2. 系统管理维护3. 网络故障排查4. 合规性检查报错处理1.

Python轻松实现Word到Markdown的转换

《Python轻松实现Word到Markdown的转换》在文档管理、内容发布等场景中,将Word转换为Markdown格式是常见需求,本文将介绍如何使用FreeSpire.DocforPython实现... 目录一、工具简介二、核心转换实现1. 基础单文件转换2. 批量转换Word文件三、工具特性分析优点局

Python中4大日志记录库比较的终极PK

《Python中4大日志记录库比较的终极PK》日志记录框架是一种工具,可帮助您标准化应用程序中的日志记录过程,:本文主要介绍Python中4大日志记录库比较的相关资料,文中通过代码介绍的非常详细,... 目录一、logging库1、优点2、缺点二、LogAid库三、Loguru库四、Structlogphp

C++,C#,Rust,Go,Java,Python,JavaScript的性能对比全面讲解

《C++,C#,Rust,Go,Java,Python,JavaScript的性能对比全面讲解》:本文主要介绍C++,C#,Rust,Go,Java,Python,JavaScript性能对比全面... 目录编程语言性能对比、核心优势与最佳使用场景性能对比表格C++C#RustGoJavapythonjav

Python海象运算符:=的具体实现

《Python海象运算符:=的具体实现》海象运算符又称​​赋值表达式,Python3.8后可用,其核心设计是在表达式内部完成变量赋值并返回该值,从而简化代码逻辑,下面就来详细的介绍一下如何使用,感兴趣... 目录简介​​条件判断优化循环控制简化​推导式高效计算​正则匹配与数据提取​性能对比简介海象运算符

python项目环境切换的几种实现方式

《python项目环境切换的几种实现方式》本文主要介绍了python项目环境切换的几种实现方式,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 如何在不同python项目中,安装不同的依赖2. 如何切换到不同项目的工作空间3.创建项目

python项目打包成docker容器镜像的两种方法实现

《python项目打包成docker容器镜像的两种方法实现》本文介绍两种将Python项目打包为Docker镜像的方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 目录简单版:(一次成功,后续下载对应的软件依赖)第一步:肯定是构建dockerfile,如下:第二步

Python + Streamlit项目部署方案超详细教程(非Docker版)

《Python+Streamlit项目部署方案超详细教程(非Docker版)》Streamlit是一款强大的Python框架,专为机器学习及数据可视化打造,:本文主要介绍Python+St... 目录一、针对 Alibaba Cloud linux/Centos 系统的完整部署方案1. 服务器基础配置(阿里