pandas常用函数学习,从文件读取输出过程中学会处理数据

本文主要是介绍pandas常用函数学习,从文件读取输出过程中学会处理数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

欢迎关注微信公众号:excelwork

 上一篇文章通过一些简单的例子了解了pandas,今天将重点介绍下pandas读取数据常用的函数:read_csv,并通过to_csv函数输出数据到文件辅助理解。read_csv可用来读取url和带有分隔符csv格式文件等,参数如下:

pandas.read_csv(filepath_or_buffer:Union[str,pathlib.Path,IO[~AnyStr]],sep=',',delimiter=None,header='infer',names=None,index_col=None,usecols=None,squeeze=False,prefix=None,mangle_dupe_cols=True,dtype=None,engine=None,converters=None,true_values=None,false_values=None,skipinitialspace=False,skiprows=None,skipfooter=0,nrows=None,na_values=None,keep_default_na=True,na_filter=True,verbose=False,skip_blank_lines=True,parse_dates=False,infer_datetime_format=False,keep_date_col=False,date_parser=None,dayfirst=False,cache_dates=True,iterator=False,chunksize=None,compression='infer',thousands=None,decimal:str='.',lineterminator=None,quotechar='"',quoting=0,doublequote=True,escapechar=None,comment=None,encoding=None,dialect=None,error_bad_lines=True,warn_bad_lines=True,delim_whitespace=False,low_memory=True,memory_map=False, float_precision=None)

    充分理解读取函数的参数,有助于我们在第一步读取阶段,就可以将数据问题处理一大半。

一、数据读取看一下结构

    参数先默认,直接使用read_csv函数读取全部数据,如下图(用截图excel文件内容展示):

data=pd.read_csv(r'C:\Users\king\Desktop\示例数据.csv')
print (data)

 

二、过滤多余行,获取红框中数据内容

    除了红框内标准数据,前6行和后7行数据我们是不需要的。

2.1 先使用skiprows参数跳过前6行

data=pd.read_csv(r'C:\Users\king\Desktop\示例数据.csv',skiprows=6)
data.to_csv(r'C:\Users\king\Desktop\skiprows_1.csv')#输出到excel方便大家阅读体验

    结果如下:如红框中所示,乱码了,咱接着往后看如何解决~

2.2 输出文件中文乱码

    上面输出数据中文乱码,我们使用encoding参数将格式转成gbk,如下图黄框所示,中文内容输出后正常。

data=pd.read_csv(r'C:\Users\king\Desktop\示例数据.csv',skiprows=6)
data.to_csv(r'C:\Users\king\Desktop\skiprows_1.csv',encoding='gbk')

2.3 使用skipfooter过滤后7行​​​​​​​

data=pd.read_csv(r'C:\Users\king\Desktop\示例数据.csv',skiprows=6,skipfooter=7,encoding='utf-8',engine='python')
data.to_csv(r'C:\Users\king\Desktop\skiprows_2.csv',encoding='gbk')

    嗯~又报错了看上去还是编码问题~解决它!

UnicodeEncodeError: 'gbk' codec can't encode character '\ufffd' in position 23: illegal multibyte sequence

2.4 使用skipfooter报错解决

    我们在读取时encoding='utf-8'再次尝试,没问题,不过出现了警告,根据警告提示,我们读取时限定下engine='python'即可。

ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support skipfooter; you can avoid this warning by specifying engine='python'.​​​​​​​

data=pd.read_csv(r'C:\Users\king\Desktop\示例数据.csv',skiprows=6,skipfooter=7,encoding='utf-8',engine='python')
data.to_csv(r'C:\Users\king\Desktop\kingskiprows_2.csv',encoding='gbk')

    结果如下:

 

三 修改表结构

3.1 修改表头名

    我们看到,表头还包含括号,不便于后续调用列,所以我们在读取时就处理好。

3.1.1 跳过原有标题行,自定义列名

    因为之前输出文件名skiprows_2的文件时,编码是gbk,所以读取skiprows_2文件的时候,encoding=‘gbk'。​​​​​​​

data=pd.read_csv(r'C:\Users\king\Desktop\skiprows_2.csv',skiprows=1,encoding='gbk',engine='python',names=['震级','时刻','纬度','经度','深度','位置'])
data.to_csv(r'C:\Users\king\Desktop\skiprows_3.csv',encoding='gbk'

3.2 避免每次读取增加索引列

    如上图前两列重复,我们最多需要一列这种索引列,如何去除多余列?

此次读取skiprows_2文件里,设置索引列为空,参数index_col=False即可。​​​​​​​

data=pd.read_csv(r'C:\Users\king\Desktop\skiprows_2.csv',skiprows=1,encoding='gbk',engine='python',names=['震级','时刻','纬度','经度','深度','位置'])
data.index_col=False
data.to_csv(r'C:\Users\king\Desktop\skiprows_3.csv',encoding='gbk')

四、数据处理

4.1 空值处理

    如果源文件里空值存成了NULL,想显示空即可,参数na_values​​​​​​​

data=pd.read_csv(r'C:\Users\king\Desktop\skiprows_3.csv',encoding='gbk',engine='python',na_values='')data.to_csv(r'C:\Users\king\Desktop\skiprows_4.csv',encoding='gbk')

4.2 大文件处理

    当数据过大,导致读取过慢,可通过参数chunksize限制数据块大小。

 

data=pd.read_csv(r'C:\Users\king\Desktop\skiprows_3.csv',chunksize=10000)

这篇关于pandas常用函数学习,从文件读取输出过程中学会处理数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/855864

相关文章

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

SQL Server数据库死锁处理超详细攻略

《SQLServer数据库死锁处理超详细攻略》SQLServer作为主流数据库管理系统,在高并发场景下可能面临死锁问题,影响系统性能和稳定性,这篇文章主要给大家介绍了关于SQLServer数据库死... 目录一、引言二、查询 Sqlserver 中造成死锁的 SPID三、用内置函数查询执行信息1. sp_w

Java对异常的认识与异常的处理小结

《Java对异常的认识与异常的处理小结》Java程序在运行时可能出现的错误或非正常情况称为异常,下面给大家介绍Java对异常的认识与异常的处理,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参... 目录一、认识异常与异常类型。二、异常的处理三、总结 一、认识异常与异常类型。(1)简单定义-什么是

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

python判断文件是否存在常用的几种方式

《python判断文件是否存在常用的几种方式》在Python中我们在读写文件之前,首先要做的事情就是判断文件是否存在,否则很容易发生错误的情况,:本文主要介绍python判断文件是否存在常用的几种... 目录1. 使用 os.path.exists()2. 使用 os.path.isfile()3. 使用

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

MySQL存储过程之循环遍历查询的结果集详解

《MySQL存储过程之循环遍历查询的结果集详解》:本文主要介绍MySQL存储过程之循环遍历查询的结果集,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言1. 表结构2. 存储过程3. 关于存储过程的SQL补充总结前言近来碰到这样一个问题:在生产上导入的数据发现

SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程

《SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程》LiteFlow是一款专注于逻辑驱动流程编排的轻量级框架,它以组件化方式快速构建和执行业务流程,有效解耦复杂业务逻辑,下面给大... 目录一、基础概念1.1 组件(Component)1.2 规则(Rule)1.3 上下文(Conte