Landsat 8 Landsat8 Collection2表面反射率数据

2024-03-27 09:12

本文主要是介绍Landsat 8 Landsat8 Collection2表面反射率数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介

Landsat8 Collection2表面反射率数据,属Collection2二级数据产品,分辨率为30米,基于陆地表面反射率代码(LaSRC)(版本1.5.0)生成,该算法利用沿海气溶胶波段进行气溶胶反演测试,还利用了MODIS的辅助气候数据和独特的辐射传输模型。
此外,LaSRC算法将观测天顶角硬编码为“0”,太阳天顶角和观测天顶角作为大气校正的一部分参与计算。

Landsat 8 Collection 2 Surface Reflectance Data 是一种由美国地质调查局(USGS)提供的遥感数据产品,用于监测和研究地球表面的反射率。该数据集基于Landsat 8 OLI(Operational Land Imager)传感器收集的遥感图像,并经过大量的预处理和校正,以提供具有较高质量和一致性的表面反射率数据。

Landsat 8 Collection 2 Surface Reflectance Data 提供了对地球表面的多波段、多时期遥感影像进行处理和校正后的结果。这些影像包括可见光、近红外、红外和短波红外波段,可以用于监测陆地、水域和大气的变化、研究植被生长和覆盖、土地利用和土地覆盖分类等应用。

Landsat 8 Collection 2 Surface Reflectance Data 还提供了一些附加的衍生产品,如植被指数(如NDVI和EVI)、地表温度数据等。这些衍生产品可以用于进一步的地表研究和分析。

Landsat 8 Collection 2 Surface Reflectance Data 可以免费获取,并且可以通过USGS的EarthExplorer网站或其他相关的数据下载平台获得。数据以GeoTIFF格式存储,并可以与地理信息系统(GIS)软件进行集成和分析。

数据集ID: 

LC08/02/SR

时间范围: 2013年03月-现在

范围: 全国

来源: USGS

复制代码段: 

var images = pie.ImageCollection("LC08/02/SR")

波段

名称单位类型值域范围填充值乘法比例因子加性比例因子描述信息
B1Reflectanceuint167273~4363600.0000275-0.2Band 1 SR
B2Reflectanceuint167273~4363600.0000275-0.2Band 2 SR
B3Reflectanceuint167273~4363600.0000275-0.2Band 3 SR
B4Reflectanceuint167273~4363600.0000275-0.2Band 4 SR
B5Reflectanceuint167273~4363600.0000275-0.2Band 5 SR
B6Reflectanceuint161~6553500.0000275-0.2Band 6 SR
B7Reflectanceuint167273~4363600.0000275-0.2Band 7 SR
B10Kelvinuint161~6553500.00341802149Band 10 ST
QA_PIXELBit Indexuint1621824~655341--Level 2 Pixel Quality Band
SR_QA_AEROSOLBit Indexuint80~2551--Aerosol QA
QA_RADSATBit Indexuint160~382932768--Radiometric Saturation QA
ST_QAKelvinint160~32767-99990.01-Surface Temperature Uncertainty
ST_TRANW/(m 2.sr.μm)/ DNint160~22000-99990.001-Thermal Band in Radiance
ST_URADW/(m 2.sr.μm)/ DNint160~28000-99990.001-Upwelled Radiance
ST_DRADW/(m 2.sr.μm)/ DNint160~28000-99990.001-Downwelled Radiance
ST_ATRADUnitlessint160~10000-99990.0001-Atmospheric Transmittance
ST_EMISUnitlessint160~10000-99990.0001-Emissivity estimated from ASTER GED
ST_EMSDUnitlessint160~10000-99990.0001-Emissivity standard deviation
ST_CDISTKilometersint160~24000-99990.01-Pixel distance to cloud
QA_PIXEL Bit Index
  • Bit 0: Fill
    • 0: Image data
    • 1: Fill data
  • Bit 1: Dilated Cloud
    • 0: Cloud is not dilated or no cloud
    • 1: Cloud dilation
  • Bit 2: Cirrus
    • 0: Cirrus Confidence: no confidence level set or Low Confidence
    • 1: High confidence cirrus
  • Bit 3: Cloud
    • 0: Cloud confidence is not high
    • 1: High confidence cloud
  • Bit 4: Cloud shadow
    • 0: Cloud Shadow Confidence is not high
    • 1: High confidence cloud shadow
  • Bit 5: Snow
    • 0: Snow/Ice Confidence is not high
    • 1: High confidence snow cover
  • Bit 6: Clear
    • 0: Cloud or Dilated Cloud bits are set
    • 1: Cloud and Dilated Cloud bits are not set
  • Bit 7: Water
    • 0: Land or cloud
    • 1: Water
  • Bits 8-9: Cloud Confidence
    • 00: No confidence level set
    • 01: Low confidence
    • 10: Medium confidence
    • 11: High confidence
  • Bits 10-11: Cloud Shadow Confidence
    • 00: No confidence level set
    • 01: Low confidence
    • 10: Reserved
    • 11: High confidence
  • Bits 12-13: Snow/Ice Confidence
    • 00: No confidence level set
    • 01: Low confidence
    • 10: Reserved
    • 11: High confidence
  • Bits 14-15: Cirrus Confidence
    • 00: No confidence level set
    • 01: Low confidence
    • 10: Reserved
    • 11: High confidence
QA_RADSAT Bit Index
  • Bit 0: Band 1 Data Saturation
    • 0: No saturation
    • 1: Saturated data
  • Bit 1: Band 2 Data Saturation
    • 0: No saturation
    • 1: Saturated data
  • Bit 2: Band 3 Data Saturation
    • 0: No saturation
    • 1: Saturated data
  • Bit 3: Band 4 Data Saturation
    • 0: No saturation
    • 1: Saturated data
  • Bit 4: Band 5 Data Saturation
    • 0: No saturation
    • 1: Saturated data
  • Bit 5: Band 6 Data Saturation
    • 0: No saturation
    • 1: Saturated data
  • Bit 6: Band 7 Data Saturation
    • 0: No saturation
    • 1: Saturated data
  • Bit 8: Band 9 Data Saturation
    • 0: No saturation
    • 1: Saturated data
  • Bit 11: Terrain occlusion
    • 0: No terrain occlusion
    • 1: Terrain occlusion
QA_AEROSOL Bit Index
  • Bit 0: Fill
    • 0: Pixel is not fill
    • 1: Pixel is fill
  • Bit 1: Valid aerosol retrieval
    • 0: Pixel retrieval is not valid
    • 1: Pixel retrieval is valid
  • Bit 2: Water
    • 0: Pixel is not water
    • 1: Pixel is water
  • Bit 5: Interpolated Aerosol
    • 0: Pixel is not aerosol interpolated
    • 1: Pixel is aerosol interpolated
  • Bits 6-7: Aerosol Level
    • 00: Climatology
    • 01: Low
    • 10: Medium
    • 11: High

属性

landsat_product_id

string

影像名称

processing_level

string

产品级别

date_acquired

string

拍摄日期(ISO 8601格式)

collection_category

string

影像质量级别属性,如T2,T1等

cloud_cover

float

云量覆盖百分比,-1表示未计算

sun_azimuth

double

太阳方位角

sun_elevation

double

太阳高度角

sensor_id

string

传感器类型

wrs_path

int

条带号

wrs_row

int

行编号

date

string

影像日期

代码:

/*** @File    :   HelloPIE* @Time    :   2020/7/21* @Author  :   piesat* @Version :   1.0* @Contact :   400-890-0662* @License :   (C)Copyright 航天宏图信息技术股份有限公司* @Desc    :   时空计算云服务平台的入门程序*/
//地图居中并且缩放到第6级别
Map.setCenter(120.254, 41.726, 6);
//设置显示显示参数
var visParam = {min: 0,max: 0.3,bands: ["B4","B3","B2"]
};
//加载指定的影像数据数据,筛选特定的波段数据
var image = pie.Image("LC08/02/SR/LC08_121031_20170101").select(["B4","B3","B2"]).multiply(0.0000275).subtract(0.2);
//输出影像的信息
print("image", image);
//加载显示影像
Map.addLayer(image, visParam, "image");

这篇关于Landsat 8 Landsat8 Collection2表面反射率数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/851615

相关文章

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

C#使用iText获取PDF的trailer数据的代码示例

《C#使用iText获取PDF的trailer数据的代码示例》开发程序debug的时候,看到了PDF有个trailer数据,挺有意思,于是考虑用代码把它读出来,那么就用到我们常用的iText框架了,所... 目录引言iText 核心概念C# 代码示例步骤 1: 确保已安装 iText步骤 2: C# 代码程

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

python库pydantic数据验证和设置管理库的用途

《python库pydantic数据验证和设置管理库的用途》pydantic是一个用于数据验证和设置管理的Python库,它主要利用Python类型注解来定义数据模型的结构和验证规则,本文给大家介绍p... 目录主要特点和用途:Field数值验证参数总结pydantic 是一个让你能够 confidentl

JAVA实现亿级千万级数据顺序导出的示例代码

《JAVA实现亿级千万级数据顺序导出的示例代码》本文主要介绍了JAVA实现亿级千万级数据顺序导出的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 前提:主要考虑控制内存占用空间,避免出现同时导出,导致主程序OOM问题。实现思路:A.启用线程池

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本