Linux系统性能分析——iostat

2024-03-26 23:18

本文主要是介绍Linux系统性能分析——iostat,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

I/O子系统的监视器——iostat

一、iostat是什么?

iostat(I/O statistics),用来动态监视系统的I/O操作活动。

二、iostat能做什么?

通过iostat方便查看CPU、网卡、tty设备、磁盘、CD-ROM 等等设备的活动情况, 负载信息。

三、iostat怎么使用?

用法: iostat [ 选项 ] [ <时间间隔> [ <次数> ] ]
选项:
[ -c ] [ -d ] [ -N ] [ -n ] [ -h ] [ -k | -m ] [ -t ] [ -V ] [ -x ] [ -z ]
[ <设备> [...] | ALL ] [ -p [ <设备> [,...] | ALL ] ]

选项
-c: 显示CPU使用情况
-d: 显示磁盘使用情况
-k: 以 KB 为单位显示
-m: 以 M 为单位显示
-N: 显示磁盘阵列(LVM) 信息
-n: 显示NFS 使用情况
-p: [磁盘] 显示磁盘和分区的情况
-t: 显示终端和CPU的信息
-x: 显示详细信息
-V: 显示版本信息

$ iostat -c
Linux 2.6.32-358.el6.x86_64 (localhost.localdomain) 	2020年02月03日 	_x86_64_	(4 CPU)avg-cpu:  %user   %nice %system %iowait  %steal   %idle0.03    0.00    0.04    0.01    0.00   99.91[tangf@localhost ~]$ iostat
Linux 2.6.32-358.el6.x86_64 (localhost.localdomain) 	2020年02月03日 	_x86_64_	(4 CPU)avg-cpu:  %user   %nice %system %iowait  %steal   %idle0.03    0.00    0.04    0.01    0.00   99.91Device:            tps   Blk_read/s   Blk_wrtn/s   Blk_read   Blk_wrtn
scd0              0.00         0.01         0.00         88          0
sda               0.38        27.09         1.58     448172      26176
  • %user :用户模式下CPU时间占用比例;
  • %nice :通过nice改变了进程调度优先级的进程,在用户模式下CPU时间占用比例
  • %system :系统模式下CPU时间占用比例;
  • %iowait :CPU等待磁盘I/O导致空闲状态CPU时间占用比例;
  • %steal :当hypervisor服务另一个虚拟处理器的时候,虚拟CPU等待实际CPU的时间的百分比(如果此值过大,说明主机分配的虚拟机数量过多)
  • %idle :CPU空闲时间占用比例;

使用-k、-m参数,指定显示单位,默认B(字节)为单位

$ iostat -d
Linux 2.6.32-358.el6.x86_64 (localhost.localdomain) 	2020年02月03日 	_x86_64_	(4 CPU)Device:            tps   Blk_read/s   Blk_wrtn/s   Blk_read   Blk_wrtn
scd0              0.00         0.00         0.00         88          0
sda               0.31        19.82         4.80     449708     108904$ iostat -dk
Linux 2.6.32-358.el6.x86_64 (localhost.localdomain) 	2020年02月03日 	_x86_64_	(4 CPU)Device:            tps    kB_read/s    kB_wrtn/s    kB_read    kB_wrtn
scd0              0.00         0.00         0.00         44          0
sda               0.31         9.90         2.40     224854      54452$ iostat -dm
Linux 2.6.32-358.el6.x86_64 (localhost.localdomain) 	2020年02月03日 	_x86_64_	(4 CPU)Device:            tps    MB_read/s    MB_wrtn/s    MB_read    MB_wrtn
scd0              0.00         0.00         0.00          0          0
sda               0.31         0.01         0.00        219         53
  • tps :该设备每秒的传输次数(Indicate the number of transfers per second that were issued to the device.)。“一次传输”意思是“一次I/O请求”。多个逻辑请求可能会被合并为“一次I/O请求”。“一次传输”请求的大小是未知的。
  • kB_read/s :每秒从设备(drive expressed)读取的数据量;
  • kB_wrtn/s :每秒向设备(drive expressed)写入的数据量;
  • kB_read :读取的总数据量
  • kB_wrtn :写入的总数据量;

注:如果%iowait的值过高,表示硬盘存在I/O瓶颈,%idle值高,表示CPU较空闲,如果%idle值高但系统响应慢时,有可能是CPU等待分配内存,此时应加大内存容量。%idle值如果持续低于10,那么系统的CPU处理能力相对较低,表明系统中最需要解决的资源是CPU。

$ iostat -N
Linux 2.6.32-358.el6.x86_64 (localhost.localdomain) 	2020年02月03日 	_x86_64_	(4 CPU)avg-cpu:  %user   %nice %system %iowait  %steal   %idle0.04    0.00    0.05    0.01    0.00   99.90Device:            tps   Blk_read/s   Blk_wrtn/s   Blk_read   Blk_wrtn
scd0              0.00         0.00         0.00         88          0
sda               0.31        19.59         4.75     449708     109128$ iostat -n
Linux 2.6.32-358.el6.x86_64 (localhost.localdomain) 	2020年02月03日 	_x86_64_	(4 CPU)Filesystem:              rBlk_nor/s   wBlk_nor/s   rBlk_dir/s   wBlk_dir/s   rBlk_svr/s   wBlk_svr/s     ops/s    rops/s    wops/s$ iostat -p
Linux 2.6.32-358.el6.x86_64 (localhost.localdomain) 	2020年02月03日 	_x86_64_	(4 CPU)avg-cpu:  %user   %nice %system %iowait  %steal   %idle0.04    0.00    0.05    0.01    0.00   99.90Device:            tps   Blk_read/s   Blk_wrtn/s   Blk_read   Blk_wrtn
scd0              0.00         0.00         0.00         88          0
sda               0.31        19.69         4.78     449708     109128
sda1              0.03         0.87         0.00      19802         24
sda2              0.26        18.63         4.78     425602     109104
sda3              0.02         0.14         0.00       3088          0$ iostat -t
Linux 2.6.32-358.el6.x86_64 (localhost.localdomain) 	2020年02月03日 	_x86_64_	(4 CPU)2020年02月03日 12时08分35秒
avg-cpu:  %user   %nice %system %iowait  %steal   %idle0.04    0.00    0.05    0.01    0.00   99.90Device:            tps   Blk_read/s   Blk_wrtn/s   Blk_read   Blk_wrtn
scd0              0.00         0.00         0.00         88          0
sda               0.31        19.66         4.77     449708     109128$ iostat -V
sysstat 版本 9.0.4
(C) Sebastien Godard (sysstat <at> orange.fr)

-x选项,查看详细信息

$ iostat -dx 1 2
Linux 2.6.32-358.el6.x86_64 (localhost.localdomain) 	2020年02月03日 	_x86_64_	(4 CPU)Device:         rrqm/s   wrqm/s     r/s     w/s   rsec/s   wsec/s avgrq-sz avgqu-sz   await  svctm  %util
scd0              0.00     0.00    0.00    0.00     0.01     0.00     8.00     0.00    0.64   0.64   0.00
sda               0.34     0.09    0.27    0.10    25.84     1.55    74.42     0.00    6.09   0.90   0.03Device:         rrqm/s   wrqm/s     r/s     w/s   rsec/s   wsec/s avgrq-sz avgqu-sz   await  svctm  %util
scd0              0.00     0.00    0.00    0.00     0.00     0.00     0.00     0.00    0.00   0.00   0.00
sda               0.00     0.00    0.00    0.00     0.00     0.00     0.00     0.00    0.00   0.00   0.00
  • rrqm/s: 每秒进行 merge 的读操作数目.即 delta(rmerge)/s
  • wrqm/s: 每秒进行 merge 的写操作数目.即 delta(wmerge)/s
  • r/s: 每秒完成的读 I/O 设备次数.即 delta(rio)/s
  • w/s: 每秒完成的写 I/O 设备次数.即 delta(wio)/s
  • rsec/s: 每秒读扇区数.即 delta(rsect)/s
  • wsec/s: 每秒写扇区数.即 delta(wsect)/s
  • rkB/s: 每秒读K字节数.是 rsect/s 的一半,因为每扇区大小为512字节.(需要计算)
  • wkB/s: 每秒写K字节数.是 wsect/s 的一半.(需要计算)
  • avgrq-sz:平均每次设备I/O操作的数据大小 (扇区).delta(rsect+wsect)/delta(rio+wio)
  • avgqu-sz:平均I/O队列长度.即 delta(aveq)/s/1000 (因为aveq的单位为毫秒).
  • await: 平均每次设备I/O操作的等待时间 (毫秒).即 delta(ruse+wuse)/delta(rio+wio)
  • svctm: 平均每次设备I/O操作的服务时间 (毫秒).即 delta(use)/delta(rio+wio)
  • %util: 一秒中有百分之多少的时间用于 I/O 操作,或者说一秒中有多少时间 I/O 队列是非空的,即 delta(use)/s/1000 (因为use的单位为毫秒)
  • 如果 %util 接近 100%,说明产生的I/O请求太多,I/O系统已经满负荷,该磁盘可能存在瓶颈。 idle小于70% IO压力就较大了,一般读取速度有较多的wait。 同时可以结合vmstat 查看b参数(等待资源的进程数)和wa参数(IO等待所占用的CPU时间的百分比,高过30%时IO压力高)。另外 await值也要多和 svctm值结合起来参考,差的过高就一定有 IO 的问题。
  • avgrq-sz也是个做 IO 调优时需要注意的地方,这个就是直接每次操作的数据的大小,如果次数多,但数据拿的小的话,其实 IO 也会很小。如果数据拿的大,IO 的数据才会高。也可以通过 avgrq-sz × ( r/s or w/s ) = rsec/s or wsec/s。也就是讲,读定速度是这个来决定的。
  • svctm 一般要小于 await (因为同时等待的请求的等待时间被重复计算了),svctm 的大小一般和磁盘性能有关,CPU/内存的负荷也会对其有影响,请求过多也会间接导致 svctm 的增加。await 的大小一般取决于服务时间(svctm) 以及 I/O 队列的长度和 I/O 请求的发出模式。如果 svctm 比较接近 await,说明 I/O 几乎没有等待时间;如果 await 远大于 svctm,说明 I/O 队列太长,应用得到的响应时间变慢,如果响应时间超过了用户可以容许的范围,这时可以考虑更换更快的磁盘,调整内核 elevator 算法,优化应用,或者升级 CPU。
    队列长度(avgqu-sz)也可作为衡量系统 I/O 负荷的指标,但由于 avgqu-sz 是按照单位时间的平均值,所以不能反映瞬间的 I/O 洪水。

形象的比喻:

  • r/s+w/s 类似于交款人的总数
  • 平均队列长度(avgqu-sz)类似于单位时间里平均排队人的个数
  • 平均服务时间(svctm)类似于收银员的收款速度
  • 平均等待时间(await)类似于平均每人的等待时间
  • 平均I/O数据(avgrq-sz)类似于平均每人所买的东西多少
    I/O 操作率 (%util)类似于收款台前有人排队的时间比例
    设备IO操作:总IO(io)/s = r/s(读) +w/s(写)
  • 平均等待时间=单个I/O服务器时间*(1+2+…+请求总数-1)/请求总数
  • 每秒发出的I/0请求很多,但是平均队列就4,表示这些请求比较均匀,大部分处理还是比较及时。

这篇关于Linux系统性能分析——iostat的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/850182

相关文章

关于MyISAM和InnoDB对比分析

《关于MyISAM和InnoDB对比分析》:本文主要介绍关于MyISAM和InnoDB对比分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录开篇:从交通规则看存储引擎选择理解存储引擎的基本概念技术原理对比1. 事务支持:ACID的守护者2. 锁机制:并发控制的艺

Mac系统下卸载JAVA和JDK的步骤

《Mac系统下卸载JAVA和JDK的步骤》JDK是Java语言的软件开发工具包,它提供了开发和运行Java应用程序所需的工具、库和资源,:本文主要介绍Mac系统下卸载JAVA和JDK的相关资料,需... 目录1. 卸载系统自带的 Java 版本检查当前 Java 版本通过命令卸载系统 Java2. 卸载自定

基于Linux的ffmpeg python的关键帧抽取

《基于Linux的ffmpegpython的关键帧抽取》本文主要介绍了基于Linux的ffmpegpython的关键帧抽取,实现以按帧或时间间隔抽取关键帧,文中通过示例代码介绍的非常详细,对大家的学... 目录1.FFmpeg的环境配置1) 创建一个虚拟环境envjavascript2) ffmpeg-py

Linux脚本(shell)的使用方式

《Linux脚本(shell)的使用方式》:本文主要介绍Linux脚本(shell)的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述语法详解数学运算表达式Shell变量变量分类环境变量Shell内部变量自定义变量:定义、赋值自定义变量:引用、修改、删

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis

Python主动抛出异常的各种用法和场景分析

《Python主动抛出异常的各种用法和场景分析》在Python中,我们不仅可以捕获和处理异常,还可以主动抛出异常,也就是以类的方式自定义错误的类型和提示信息,这在编程中非常有用,下面我将详细解释主动抛... 目录一、为什么要主动抛出异常?二、基本语法:raise关键字基本示例三、raise的多种用法1. 抛

Linux链表操作方式

《Linux链表操作方式》:本文主要介绍Linux链表操作方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、链表基础概念与内核链表优势二、内核链表结构与宏解析三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势六、典型应用场景七、调试技巧与

基于Python实现一个简单的题库与在线考试系统

《基于Python实现一个简单的题库与在线考试系统》在当今信息化教育时代,在线学习与考试系统已成为教育技术领域的重要组成部分,本文就来介绍一下如何使用Python和PyQt5框架开发一个名为白泽题库系... 目录概述功能特点界面展示系统架构设计类结构图Excel题库填写格式模板题库题目填写格式表核心数据结构

详解Linux中常见环境变量的特点与设置

《详解Linux中常见环境变量的特点与设置》环境变量是操作系统和用户设置的一些动态键值对,为运行的程序提供配置信息,理解环境变量对于系统管理、软件开发都很重要,下面小编就为大家详细介绍一下吧... 目录前言一、环境变量的概念二、常见的环境变量三、环境变量特点及其相关指令3.1 环境变量的全局性3.2、环境变

github打不开的问题分析及解决

《github打不开的问题分析及解决》:本文主要介绍github打不开的问题分析及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、找到github.com域名解析的ip地址二、找到github.global.ssl.fastly.net网址解析的ip地址三