AI研报:从Sora看多模态大模型发展

2024-03-26 17:36

本文主要是介绍AI研报:从Sora看多模态大模型发展,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《从Sora看多模态大模型发展》的研报来自浙商证券,写于2024年2月。

这篇报告主要探讨了多模态大模型的发展趋势,特别是OpenAI发布的视频生成模型Sora,以及其对行业发展的影响。以下是报告的核心内容概述:

  1. Sora模型的发布:
    - OpenAI于2024年2月16日发布了视频生成模型Sora,该模型能够生成长达1分钟、不同宽高比和分辨率的视频和图片。
    - Sora基于Diffusion Transformer技术,结合了视频压缩网络、潜空间patch、直接在原始大小训练和重新标注技术,能够处理图像和视频输入,实现多种视频生成和编辑功能。


视频压缩网络(Video compression network):减少视觉数据维度。输入原始视频,输出一个在时间和空间上都压缩了的潜在空间。Sora在这个压缩后的潜在空间中进行训练。(同时训练了一个解码器将生成的潜在表征转回原像素空间)
潜空间patch(Spacetime latent patches ):类比Transformer tokens,推理时通过在合适大小的网格中随机初始化patch控制生成视频的大小。
直接在原始图片的大小上训练:过去往往将视频或者图片压缩到固定大小(比如4秒钟、分辨率256*256),Sora直接在原始素材规格上训练。
为视频训练素材生成详细字幕和标注:Re-captioning technique字幕自动生成。首先训练一个能生成详细描述的标注模型,然后用它为训练集中的视频生成文本说明。DALL E3中已经使用过,使用GPT将简短prompt转化为详细说明,这些说明会被输入到视频模型中。这可以增强文本理解能力,可以提高文本的保真度和视频的整体质量,使得Sora能够生产准确遵循用户提升的高质量视频。
Sora核心能力:3D一致性、物体持久性、世界交互、模拟数字世界
Sora模型的局限性:虽然能模拟一些基础物理互动,比如玻璃的碎裂,但还不够精确;
其他相互作用,比如吃食物,并不总是能产生物体状态的正确变化;
长视频中存在逻辑不连贯,或者物体会无缘无故出现的现象。

  1. 多模态大模型的商业化前景:
    - 国内外厂商如谷歌、字节跳动等也在布局多模态大模型领域,预计2024年文生视频将进入商业化探索阶段。
    - 高质量数据和底层通用大模型是文生视频能力的关键因素,随着技术的进步,文生视频在时间长度、画面清晰度和内容逼真程度等方面有望实现显著提升。
  2. 全球视频内容市场的潜力:
    - 据数据显示,2025年全球数字视频内容市场规模有望达到3271.9亿美元,2021-2025年复合年增长率约为13.7%。
    - 海外已有Synthesia、Runway等厂商在文生视频领域形成成熟商业方案,应用于企业产品介绍、操作指南、客户服务等场景。
  3. 建议关注的标的公司:
    - 大模型厂商:科大讯飞、云从科技、微软、谷歌。
    - 多模态应用厂商:万兴科技、虹软科技、焦点科技、Adobe。
公司名称代码AI+视频相关业务/产品
科大讯飞002230.SZ国产大模型龙头,多模态领域技术积累深厚
海康威视002415.SZ研发视觉多模态大模型
大华股份002236.SZ自研大华星汉大模型
云从科技-UW688327.SH国内CV领域龙头厂商之一
焦点科技002315.SZAI外贸虚拟人视频助手
虹软科技688088.SH视觉AI开放平台
万兴科技300624.SZAI视频领域龙头,“天幕”大模型
国投智能300188.SZAI视频图像鉴真工作站
当虹科技688039.SHAI智能视频解决方案
网达软件603189.SH积极推动“大视频+AI"在垂直领域的布局
丝路视觉300556.SZ子公司是视频染技术龙头
商汤-Whttp://0020.HK“日日新SenseNova"大模型
拓尔思300229.SZ并面向媒体、金融、政务领域、拓天大模型
汉王科技002362.SZ笔智能交互、NLP技术、大数据处理、智能人机交互、垂直领域大模型
  1. 风险提示:

- AI技术迭代不及预期的风险。

- AI商业化产品发布不及预期的风险。

- 政策不确定性带来的风险。

- 下游市场不确定性带来的风险。

报告还详细分析了多模态AI的核心技术环节、Sora模型的技术路线和应用案例,以及国内外其他厂商的AI视频生成算法及工具。此外,报告对AIGC在视频领域的商业化现状与展望进行了探讨,并预测了千亿级数字视频生成市场的未来潜力。

这篇关于AI研报:从Sora看多模态大模型发展的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/849306

相关文章

三频BE12000国补到手2549元! ROG 魔盒Pro WIFI7电竞AI路由器上架

《三频BE12000国补到手2549元!ROG魔盒ProWIFI7电竞AI路由器上架》近日,华硕带来了ROG魔盒ProWIFI7电竞AI路由器(ROGSTRIXGR7Pro),目前新... 华硕推出了ROG 魔盒Pro WIFI7电竞AI路由器(ROG STRIX GR7 Phttp://www.cppcn

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

Spring AI 实现 STDIO和SSE MCP Server的过程详解

《SpringAI实现STDIO和SSEMCPServer的过程详解》STDIO方式是基于进程间通信,MCPClient和MCPServer运行在同一主机,主要用于本地集成、命令行工具等场景... 目录Spring AI 实现 STDIO和SSE MCP Server1.新建Spring Boot项目2.a

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Spring AI ectorStore的使用流程

《SpringAIectorStore的使用流程》SpringAI中的VectorStore是一种用于存储和检索高维向量数据的数据库或存储解决方案,它在AI应用中发挥着至关重要的作用,本文给大家介... 目录一、VectorStore的基本概念二、VectorStore的核心接口三、VectorStore的

Spring AI集成DeepSeek三步搞定Java智能应用的详细过程

《SpringAI集成DeepSeek三步搞定Java智能应用的详细过程》本文介绍了如何使用SpringAI集成DeepSeek,一个国内顶尖的多模态大模型,SpringAI提供了一套统一的接口,简... 目录DeepSeek 介绍Spring AI 是什么?Spring AI 的主要功能包括1、环境准备2