算法训练day44完全背包518. 零钱兑换 II377. 组合总和 Ⅳ

2024-03-25 00:04

本文主要是介绍算法训练day44完全背包518. 零钱兑换 II377. 组合总和 Ⅳ,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

完全背包理论

代码随想录

518. 零钱兑换 II

题目分析

在求装满背包有几种方案的时候,认清遍历顺序是非常关键的。

如果求组合数就是外层for循环遍历物品,内层for遍历背包

如果求排列数就是外层for遍历背包,内层for循环遍历物品

acm模式代码

#include <iostream>
#include <vector>class Solution
{
public:int change(int amount, std::vector<int> &coins){std::vector<int> dp(amount + 1, 0);dp[0] = 1;for (int i = 0; i < coins.size(); i++) {for (int j = coins[i]; j <= amount; j++) {dp[j] += dp[j - coins[i]];}}// 求得是排列数// for (int j = 0; j <= amount; j++)// { // 遍历背包容量//     for (int i = 0; i < coins.size(); i++)//     { // 遍历物品//         if (j - coins[i] >= 0)//             dp[j] += dp[j - coins[i]];//     }// }for (int i : dp){std::cout << i << " ";}return dp[amount];}
};int main()
{Solution sol;std::vector<int> coins = {1, 2, 5};int result = sol.change(5, coins);return 0;
}

377. 组合总和 Ⅳ

题目分析

该解法使用了动态规划的方法,创建了一个动态规划数组 dp,其中 dp[i] 表示达到总和为 i 的目标数的组合方式数量。初始化 dp[0] = 1,因为达到总和为 0 的方式只有一种,即不使用任何数字。

然后,算法通过两层循环来填充这个 dp 数组:

  1. 外层循环i 从 0 遍历到 target): 这个循环遍历所有的目标值,从 0 到 target,对于每一个可能的目标值,尝试找到组合它的所有可能方式。

  2. 内层循环j 遍历 nums 数组): 对于每一个目标值 i,遍历 nums 数组中的每个数 nums[j],尝试将其加到之前的组合中。如果当前目标值 i 大于或等于 nums[j],则 dp[i] 的值应该加上 dp[i - nums[j]] 的值,因为 dp[i - nums[j]] 代表了从 i 减去当前数字 nums[j] 之后的目标值的组合数。注意事项

  • 检查 dp[i] < INT_MAX - dp[i - nums[j]] 是为了防止整数溢出。由于 dp[i] 在每次迭代中都可能增加,需要确保加上 dp[i - nums[j]] 不会导致溢出。
  • 初始化 dp[0] = 1 是基于组合数学中的一个原理,即“没有”是达到目标总和为 0 的唯一方式。结果

通过填充 dp 数组,最终 dp[target] 中存储的就是使用 nums 数组中的数通过加法组合得到目标数 target 的总方法数。

这种动态规划方法有效地将一个看似复杂的组合问题分解为了更小、更易于管理的子问题,通过解决这些子问题并逐步构建解决方案,最终达到了求解总问题的目的。

代码

class Solution {
public:int combinationSum4(vector<int>& nums, int target) {vector<int> dp(target + 1, 0);dp[0] = 1;for (int i = 0; i <= target; i++) { // 遍历背包for (int j = 0; j < nums.size(); j++) { // 遍历物品if (i - nums[j] >= 0 && dp[i] < INT_MAX - dp[i - nums[j]]) {dp[i] += dp[i - nums[j]];}}}return dp[target];}
};

这篇关于算法训练day44完全背包518. 零钱兑换 II377. 组合总和 Ⅳ的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/843233

相关文章

Python使用Reflex构建现代Web应用的完全指南

《Python使用Reflex构建现代Web应用的完全指南》这篇文章为大家深入介绍了Reflex框架的设计理念,技术特性,项目结构,核心API,实际开发流程以及与其他框架的对比和部署建议,感兴趣的小伙... 目录什么是 ReFlex?为什么选择 Reflex?安装与环境配置构建你的第一个应用核心概念解析组件

Python日期和时间完全指南与实战

《Python日期和时间完全指南与实战》在软件开发领域,‌日期时间处理‌是贯穿系统设计全生命周期的重要基础能力,本文将深入解析Python日期时间的‌七大核心模块‌,通过‌企业级代码案例‌揭示最佳实践... 目录一、背景与核心价值二、核心模块详解与实战2.1 datetime模块四剑客2.2 时区处理黄金法

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

Android NDK版本迭代与FFmpeg交叉编译完全指南

《AndroidNDK版本迭代与FFmpeg交叉编译完全指南》在Android开发中,使用NDK进行原生代码开发是一项常见需求,特别是当我们需要集成FFmpeg这样的多媒体处理库时,本文将深入分析A... 目录一、android NDK版本迭代分界线二、FFmpeg交叉编译关键注意事项三、完整编译脚本示例四

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

Linux find 命令完全指南及核心用法

《Linuxfind命令完全指南及核心用法》find是Linux系统最强大的文件搜索工具,支持嵌套遍历、条件筛选、执行动作,下面给大家介绍Linuxfind命令完全指南,感兴趣的朋友一起看看吧... 目录一、基础搜索模式1. 按文件名搜索(精确/模糊匹配)2. 排除指定目录/文件二、根据文件类型筛选三、时间