业界最全遥感图像语义分割Benchmark发布啦!还有提高小目标分割性能的C2FNet等你pick!

本文主要是介绍业界最全遥感图像语义分割Benchmark发布啦!还有提高小目标分割性能的C2FNet等你pick!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

遥感图像语义分割是图像分割领域的一个重要的垂类应用,有着广泛的需求和实际应用价值,尤其在灾害评估、农作物产量估计和土地变化监测等领域有着不可替代的作用。相比于自然图像的语义分割,遥感图像语义分割由于有其自身的特殊性和挑战性,如遥感图像存在大量微小目标,这就要求分割方法和结果要足够精细。
自然图像和遥感图像对比
自然图像和遥感图像对比

基于飞桨PaddleSeg的遥感图像分割Benchmark

近年来,随着人工智能技术的发展,深度学习成为图像语义分割领域的主流技术。但由于遥感图像预处理、模型设置、训练超参数等条件的不同,导致很多研究者在同一个遥感语义分割数据集上取得的表现会存在较大的差异。为了解决这个问题,飞桨与百度研究院大数据实验室合作,基于飞桨图像分割套件PaddleSeg,联合发布了一套完整的遥感图像分割Benchmark。我们测试了不同模型在多个遥感图像语义分割数据集上的性能,为广大开发者提供了一套可复现比较的标准基线。和已经发表的遥感图像语义分割模型相比,PaddleSeg提供的模型在遥感图像语义分割领域可以取得SOTA性能,部分性能数据如下所示。

  • 以下性能数据均来自:
    https://github.com/PaddlePaddle/PaddleSeg
     不同模型在iSAID数据集上的表现
    不同模型在iSAID数据集上的表现
    在这里插入图片描述
    不同模型在ISPRS Potsdam数据集上的表现
    在这里插入图片描述不同模型在ISPRS Vaihingen数据集上的表现

**

自监督预训练模型性能比较

**

此次,我们还引入了近期比较流行的自监督预训练模型,即首先在大规模遥感图像数据集上对骨干网络进行预训练,然后利用遥感图像语义分割数据在下游任务上进行微调。我们在Million-AID和DOTA2.0两个遥感图像数据集上应用自监督学习方法。为了获得充足的遥感数据,我们将两个遥感数据集内不同分辨率的图像剪裁至512x512。剪裁后的Million-AID数据集包含2,500,000张遥感图像切片,DOTA2.0数据集包含1,700,000张遥感图像切片,最终各方法性能数据如下所示。

  • 以下性能数据均来自:
    https://github.com/PaddlePaddle/PaddleSeg
    在这里插入图片描述
    基于ImageNet-1k的自监督预训练模型在遥感图像分割任务上的表现
    在这里插入图片描述
    基于遥感图像的自监督预训练模型在遥感图像分割任务上的表现

遥感图像小目标分割模型C2FNet

针对遥感图像语义分割的小目标问题,我们提出了一个由粗粒度到细粒度的二阶段分割模型C2FNet。受到人工标注过程的启发,C2FNet首先对遥感图像进行一次粗分割,并通过粗分割结果定位出小目标所在区域,然后对小目标所在的区域进行放大和进一步的细分割,最后对两次分割结果进行融合,从而提升小目标分割能力。如图7所示是CFNet模型结构示意。
图片
C2FNet模型示意图

C2FNet在主流遥感图像分割数据集iSAID上取得小目标分割SOTA性能。相比于基线模型,C2FNet对小目标如小型车辆、船舶、直升机等类别,mIoU最高提升可达2.19个百分点。并且C2FNet架构具有通用性,可适用于各种语义分割模型,对小目标分割结果均有不同程度的提升。

在这里插入图片描述
C2FNet在iSAID数据集上的表现。with ours表示采用C2FNet架构

注:SH表示船舶、LV表示大型车辆、SV表示小型车辆、HC表示直升机、SP表示游泳池、PL表示飞机、HA表示港口。
图片
分割结果可视化

通过上图,我们可以看出C2FNet可以分割出更多的小目标像素,缓解基线模型对小目标分割能力不足的问题。

总结

针对遥感图像分割领域基线不统一的问题,我们利用PaddleSeg在不同的遥感分割数据集上进行了测试,提供了可比较的SOTA基线,完善了PaddleSeg对遥感图像的支持。同时引入近期比较流行的自监督预训练模型,给广大开发者提供了更多的选择。针对遥感图像的小目标分割问题,我们提出了C2FNet二阶段分割框架,在小目标分割任务上取得SOTA性能。

本次提供的模型在PaddleSeg仓库的develop分支下可下载,欢迎star支持!

https://github.com/PaddlePaddle/PaddleSeg/tree/develop/contrib/RSSegBenchmark

小伙伴们还在等什么,一起用PaddleSeg玩转遥感图像分割吧~

关注【飞桨PaddlePaddle】公众号获取更多技术内容~

这篇关于业界最全遥感图像语义分割Benchmark发布啦!还有提高小目标分割性能的C2FNet等你pick!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/841726

相关文章

修复已被利用的高危漏洞! macOS Sequoia 15.6.1发布

《修复已被利用的高危漏洞!macOSSequoia15.6.1发布》苹果公司于今日发布了macOSSequoia15.6.1更新,这是去年9月推出的macOSSequoia操作... MACOS Sequoia 15.6.1 正式发布!此次更新修复了一个已被黑客利用的严重安全漏洞,并解决了部分中文用户反馈的

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”

Spring Boot 整合 SSE(Server-Sent Events)实战案例(全网最全)

《SpringBoot整合SSE(Server-SentEvents)实战案例(全网最全)》本文通过实战案例讲解SpringBoot整合SSE技术,涵盖实现原理、代码配置、异常处理及前端交互,... 目录Spring Boot 整合 SSE(Server-Sent Events)1、简述SSE与其他技术的对

史上最全MybatisPlus从入门到精通

《史上最全MybatisPlus从入门到精通》MyBatis-Plus是MyBatis增强工具,简化开发并提升效率,支持自动映射表名/字段与实体类,提供条件构造器、多种查询方式(等值/范围/模糊/分页... 目录1.简介2.基础篇2.1.通用mapper接口操作2.2.通用service接口操作3.进阶篇3

Java慢查询排查与性能调优完整实战指南

《Java慢查询排查与性能调优完整实战指南》Java调优是一个广泛的话题,它涵盖了代码优化、内存管理、并发处理等多个方面,:本文主要介绍Java慢查询排查与性能调优的相关资料,文中通过代码介绍的非... 目录1. 事故全景:从告警到定位1.1 事故时间线1.2 关键指标异常1.3 排查工具链2. 深度剖析:

深入解析Java NIO在高并发场景下的性能优化实践指南

《深入解析JavaNIO在高并发场景下的性能优化实践指南》随着互联网业务不断演进,对高并发、低延时网络服务的需求日益增长,本文将深入解析JavaNIO在高并发场景下的性能优化方法,希望对大家有所帮助... 目录简介一、技术背景与应用场景二、核心原理深入分析2.1 Selector多路复用2.2 Buffer

基于Python Playwright进行前端性能测试的脚本实现

《基于PythonPlaywright进行前端性能测试的脚本实现》在当今Web应用开发中,性能优化是提升用户体验的关键因素之一,本文将介绍如何使用Playwright构建一个自动化性能测试工具,希望... 目录引言工具概述整体架构核心实现解析1. 浏览器初始化2. 性能数据收集3. 资源分析4. 关键性能指

Python实现PDF按页分割的技术指南

《Python实现PDF按页分割的技术指南》PDF文件处理是日常工作中的常见需求,特别是当我们需要将大型PDF文档拆分为多个部分时,下面我们就来看看如何使用Python创建一个灵活的PDF分割工具吧... 目录需求分析技术方案工具选择安装依赖完整代码实现使用说明基本用法示例命令输出示例技术亮点实际应用场景扩

基于Python开发一个图像水印批量添加工具

《基于Python开发一个图像水印批量添加工具》在当今数字化内容爆炸式增长的时代,图像版权保护已成为创作者和企业的核心需求,本方案将详细介绍一个基于PythonPIL库的工业级图像水印解决方案,有需要... 目录一、系统架构设计1.1 整体处理流程1.2 类结构设计(扩展版本)二、核心算法深入解析2.1 自