业界最全遥感图像语义分割Benchmark发布啦!还有提高小目标分割性能的C2FNet等你pick!

本文主要是介绍业界最全遥感图像语义分割Benchmark发布啦!还有提高小目标分割性能的C2FNet等你pick!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

遥感图像语义分割是图像分割领域的一个重要的垂类应用,有着广泛的需求和实际应用价值,尤其在灾害评估、农作物产量估计和土地变化监测等领域有着不可替代的作用。相比于自然图像的语义分割,遥感图像语义分割由于有其自身的特殊性和挑战性,如遥感图像存在大量微小目标,这就要求分割方法和结果要足够精细。
自然图像和遥感图像对比
自然图像和遥感图像对比

基于飞桨PaddleSeg的遥感图像分割Benchmark

近年来,随着人工智能技术的发展,深度学习成为图像语义分割领域的主流技术。但由于遥感图像预处理、模型设置、训练超参数等条件的不同,导致很多研究者在同一个遥感语义分割数据集上取得的表现会存在较大的差异。为了解决这个问题,飞桨与百度研究院大数据实验室合作,基于飞桨图像分割套件PaddleSeg,联合发布了一套完整的遥感图像分割Benchmark。我们测试了不同模型在多个遥感图像语义分割数据集上的性能,为广大开发者提供了一套可复现比较的标准基线。和已经发表的遥感图像语义分割模型相比,PaddleSeg提供的模型在遥感图像语义分割领域可以取得SOTA性能,部分性能数据如下所示。

  • 以下性能数据均来自:
    https://github.com/PaddlePaddle/PaddleSeg
     不同模型在iSAID数据集上的表现
    不同模型在iSAID数据集上的表现
    在这里插入图片描述
    不同模型在ISPRS Potsdam数据集上的表现
    在这里插入图片描述不同模型在ISPRS Vaihingen数据集上的表现

**

自监督预训练模型性能比较

**

此次,我们还引入了近期比较流行的自监督预训练模型,即首先在大规模遥感图像数据集上对骨干网络进行预训练,然后利用遥感图像语义分割数据在下游任务上进行微调。我们在Million-AID和DOTA2.0两个遥感图像数据集上应用自监督学习方法。为了获得充足的遥感数据,我们将两个遥感数据集内不同分辨率的图像剪裁至512x512。剪裁后的Million-AID数据集包含2,500,000张遥感图像切片,DOTA2.0数据集包含1,700,000张遥感图像切片,最终各方法性能数据如下所示。

  • 以下性能数据均来自:
    https://github.com/PaddlePaddle/PaddleSeg
    在这里插入图片描述
    基于ImageNet-1k的自监督预训练模型在遥感图像分割任务上的表现
    在这里插入图片描述
    基于遥感图像的自监督预训练模型在遥感图像分割任务上的表现

遥感图像小目标分割模型C2FNet

针对遥感图像语义分割的小目标问题,我们提出了一个由粗粒度到细粒度的二阶段分割模型C2FNet。受到人工标注过程的启发,C2FNet首先对遥感图像进行一次粗分割,并通过粗分割结果定位出小目标所在区域,然后对小目标所在的区域进行放大和进一步的细分割,最后对两次分割结果进行融合,从而提升小目标分割能力。如图7所示是CFNet模型结构示意。
图片
C2FNet模型示意图

C2FNet在主流遥感图像分割数据集iSAID上取得小目标分割SOTA性能。相比于基线模型,C2FNet对小目标如小型车辆、船舶、直升机等类别,mIoU最高提升可达2.19个百分点。并且C2FNet架构具有通用性,可适用于各种语义分割模型,对小目标分割结果均有不同程度的提升。

在这里插入图片描述
C2FNet在iSAID数据集上的表现。with ours表示采用C2FNet架构

注:SH表示船舶、LV表示大型车辆、SV表示小型车辆、HC表示直升机、SP表示游泳池、PL表示飞机、HA表示港口。
图片
分割结果可视化

通过上图,我们可以看出C2FNet可以分割出更多的小目标像素,缓解基线模型对小目标分割能力不足的问题。

总结

针对遥感图像分割领域基线不统一的问题,我们利用PaddleSeg在不同的遥感分割数据集上进行了测试,提供了可比较的SOTA基线,完善了PaddleSeg对遥感图像的支持。同时引入近期比较流行的自监督预训练模型,给广大开发者提供了更多的选择。针对遥感图像的小目标分割问题,我们提出了C2FNet二阶段分割框架,在小目标分割任务上取得SOTA性能。

本次提供的模型在PaddleSeg仓库的develop分支下可下载,欢迎star支持!

https://github.com/PaddlePaddle/PaddleSeg/tree/develop/contrib/RSSegBenchmark

小伙伴们还在等什么,一起用PaddleSeg玩转遥感图像分割吧~

关注【飞桨PaddlePaddle】公众号获取更多技术内容~

这篇关于业界最全遥感图像语义分割Benchmark发布啦!还有提高小目标分割性能的C2FNet等你pick!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/841726

相关文章

PyTorch高级特性与性能优化方式

《PyTorch高级特性与性能优化方式》:本文主要介绍PyTorch高级特性与性能优化方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、自动化机制1.自动微分机制2.动态计算图二、性能优化1.内存管理2.GPU加速3.多GPU训练三、分布式训练1.分布式数据

Spring Boot 常用注解整理(最全收藏版)

《SpringBoot常用注解整理(最全收藏版)》本文系统整理了常用的Spring/SpringBoot注解,按照功能分类进行介绍,每个注解都会涵盖其含义、提供来源、应用场景以及代码示例,帮助开发... 目录Spring & Spring Boot 常用注解整理一、Spring Boot 核心注解二、Spr

macOS Sequoia 15.5 发布: 改进邮件和屏幕使用时间功能

《macOSSequoia15.5发布:改进邮件和屏幕使用时间功能》经过常规Beta测试后,新的macOSSequoia15.5现已公开发布,但重要的新功能将被保留到WWDC和... MACOS Sequoia 15.5 正式发布!本次更新为 Mac 用户带来了一系列功能强化、错误修复和安全性提升,进一步增

Python+wxPython构建图像编辑器

《Python+wxPython构建图像编辑器》图像编辑应用是学习GUI编程和图像处理的绝佳项目,本教程中,我们将使用wxPython,一个跨平台的PythonGUI工具包,构建一个简单的... 目录引言环境设置创建主窗口加载和显示图像实现绘制工具矩形绘制箭头绘制文字绘制临时绘制处理缩放和旋转缩放旋转保存编

Maven 依赖发布与仓库治理的过程解析

《Maven依赖发布与仓库治理的过程解析》:本文主要介绍Maven依赖发布与仓库治理的过程解析,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下... 目录Maven 依赖发布与仓库治理引言第一章:distributionManagement配置的工程化实践1

Java的"伪泛型"变"真泛型"后对性能的影响

《Java的伪泛型变真泛型后对性能的影响》泛型擦除本质上就是擦除与泛型相关的一切信息,例如参数化类型、类型变量等,Javac还将在需要时进行类型检查及强制类型转换,甚至在必要时会合成桥方法,这篇文章主... 目录1、真假泛型2、性能影响泛型存在于Java源代码中,在编译为字节码文件之前都会进行泛型擦除(ty

python+OpenCV反投影图像的实现示例详解

《python+OpenCV反投影图像的实现示例详解》:本文主要介绍python+OpenCV反投影图像的实现示例详解,本文通过实例代码图文并茂的形式给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前言二、什么是反投影图像三、反投影图像的概念四、反向投影的工作原理一、利用反向投影backproj

史上最全nginx详细参数配置

《史上最全nginx详细参数配置》Nginx是一个轻量级高性能的HTTP和反向代理服务器,同时也是一个通用代理服务器(TCP/UDP/IMAP/POP3/SMTP),最初由俄罗斯人IgorSyso... 目录基本命令默认配置搭建站点根据文件类型设置过期时间禁止文件缓存防盗链静态文件压缩指定定错误页面跨域问题

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB