python opencv入门 Meanshift 和 Camshift 算法(40)

2024-03-24 07:58

本文主要是介绍python opencv入门 Meanshift 和 Camshift 算法(40),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

内容来自OpenCV-Python Tutorials 自己翻译整理

目标:
在本章,学习Meanshift算法和Camshift算法来寻找和追踪视频中的目标物体。

Meanshift算法:

meanshift算法的原理很简单。假设你有一堆点集,例如直方图反向投影得到的点集。
你还有一个小的窗口,这个窗口可能是圆形的,现在你可能要移动这个窗口到点集密度最大的区域当中。
如下图:
这里写图片描述

最开始的窗口是蓝色圆环的区域,命名为C1。蓝色圆环的重音用一个蓝色的矩形标注,命名为C1_o。

然而,你发现在这个窗口当中所有点的点集构成的质心在蓝色圆形点处。而且,圆环的型心和质心并不重合。所以,移动蓝色的窗口,使得型心与之前得到的质心重合。在新移动后的圆环的区域当中再次寻找圆环当中所包围点集的质心,然后再次移动,通常情况下,型心和质心是不重合的。不断执行上面的移动过程,直到型心和质心大致重合结束。
这样,最后圆形的窗口会落到像素分布最大的地方,也就是图中的绿色圈,命名为C2。


meanshift算法不仅仅限制在二维的图像处理问题当中,同样也可以使用于高维的数据处理。可以通过选取不同的核函数,来改变区域当中偏移向量的权重,最后meanshift算法的过程一定会收敛到某一个位置。(可证明)

meanshift算法除了应用在视频追踪当中,在聚类,平滑等等各种涉及到数据以及非监督学习的场合当中均有重要应用,是一个应用广泛的算法。

假如在二维环境当中,meanshift算法处理的数据是一群离散的二维点集,但是图像是一个矩阵信息,如何在一个视频当中使用meanshift算法来追踪一个运动的物体呢?

大致流程如下:

1.首先在图像上使用矩形框或者圆形框选定一个目标区域
2.计算选定好区域的直方图分布。
3.对下一帧图像b同样计算直方图分布。
4.计算图像b当中与选定区域直方图分布最为相似的区域,使用meanshift算法将选定区域沿着最为相似的部分进行移动。(样例当中使用的是直方图反向投影)
5.重复3到4的过程。


OpenCV中的meanshift算法:
在opencv中使用meanshift算法,首先要设定目标,找到它的直方图,然后可以对这个直方图在每一帧当中进行反向投影。我们需要提供一个初试的窗口位置,计算HSV模型当中H(色调)的直方图。为了避免低亮度造成的影响,使用 cv2.inRange()将低亮度值忽略。

import cv2
import numpy as np# 设置初始化的窗口位置
r,h,c,w = 0,100,0,100 # 设置初试窗口位置和大小
track_window = (c,r,w,h)cap = cv2.VideoCapture(0)ret, frame= cap.read()# 设置追踪的区域
roi = frame[r:r+h, c:c+w]
# roi区域的hsv图像
hsv_roi = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
# 取值hsv值在(0,60,32)到(180,255,255)之间的部分
mask = cv2.inRange(hsv_roi, np.array((0., 60.,32.)), np.array((180.,255.,255.)))
# 计算直方图,参数为 图片(可多),通道数,蒙板区域,直方图长度,范围
roi_hist = cv2.calcHist([hsv_roi],[0],mask,[180],[0,180])
# 归一化
cv2.normalize(roi_hist,roi_hist,0,255,cv2.NORM_MINMAX)# 设置终止条件,迭代10次或者至少移动1次
term_crit = ( cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1 )while(1):ret, frame = cap.read()if ret == True:# 计算每一帧的hsv图像hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)# 计算反向投影dst = cv2.calcBackProject([hsv],[0],roi_hist,[0,180],1)# 调用meanShift算法在dst中寻找目标窗口,找到后返回目标窗口ret, track_window = cv2.meanShift(dst, track_window, term_crit)# Draw it on imagex,y,w,h = track_windowimg2 = cv2.rectangle(frame, (x,y), (x+w,y+h), 255,2)cv2.imshow('img2',img2)if cv2.waitKey(1) & 0xFF == ord('q'):break
cap.release()
cv2.destroyAllWindows() 

没找到合适的小视频,用摄像头来代替,把左手放到视频的左上角,追踪自己左手=_=

效果不怎么样

这里写图片描述
这里写图片描述

CamShift算法:

在视频或者是摄像头当中,如果被追踪的物体迎面过来,由于透视效果,物体会放大。之前设置好的窗口区域大小会不合适。

OpenCV实验室实现了一个CAMshift算法,首先使用meanshift算法找到目标,然后调整窗口大小,而且还会计算目标对象的的最佳外接圆的角度,并调整窗口。并使用调整后的窗口对物体继续追踪。

使用方法与meanShift算法一样,不过返回的是一个带有旋转角度的矩形。

import cv2
import numpy as np# 设置初始化的窗口位置
r,h,c,w = 0,100,0,100 # 设置初试窗口位置和大小
track_window = (c,r,w,h)cap = cv2.VideoCapture(0)ret, frame= cap.read()# 设置追踪的区域
roi = frame[r:r+h, c:c+w]
# roi区域的hsv图像
hsv_roi = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
# 取值hsv值在(0,60,32)到(180,255,255)之间的部分
mask = cv2.inRange(hsv_roi, np.array((0., 60.,32.)), np.array((180.,255.,255.)))
# 计算直方图,参数为 图片(可多),通道数,蒙板区域,直方图长度,范围
roi_hist = cv2.calcHist([hsv_roi],[0],mask,[180],[0,180])
# 归一化
cv2.normalize(roi_hist,roi_hist,0,255,cv2.NORM_MINMAX)# 设置终止条件,迭代10次或者至少移动1次
term_crit = ( cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1 )while(1):ret, frame = cap.read()if ret == True:# 计算每一帧的hsv图像hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)# 计算反向投影dst = cv2.calcBackProject([hsv],[0],roi_hist,[0,180],1)# 调用meanShift算法在dst中寻找目标窗口,找到后返回目标窗口ret, track_window = cv2.CamShift(dst, track_window, term_crit)# Draw it on imagepts = cv2.boxPoints(ret)pts = np.int0(pts)img2 = cv2.polylines(frame,[pts],True, 255,2)cv2.imshow('img2',img2)if cv2.waitKey(1) & 0xFF == ord('q'):break
cap.release()
cv2.destroyAllWindows() 

这篇关于python opencv入门 Meanshift 和 Camshift 算法(40)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/840938

相关文章

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

Spring WebClient从入门到精通

《SpringWebClient从入门到精通》本文详解SpringWebClient非阻塞响应式特性及优势,涵盖核心API、实战应用与性能优化,对比RestTemplate,为微服务通信提供高效解决... 目录一、WebClient 概述1.1 为什么选择 WebClient?1.2 WebClient 与