python opencv入门 Meanshift 和 Camshift 算法(40)

2024-03-24 07:58

本文主要是介绍python opencv入门 Meanshift 和 Camshift 算法(40),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

内容来自OpenCV-Python Tutorials 自己翻译整理

目标:
在本章,学习Meanshift算法和Camshift算法来寻找和追踪视频中的目标物体。

Meanshift算法:

meanshift算法的原理很简单。假设你有一堆点集,例如直方图反向投影得到的点集。
你还有一个小的窗口,这个窗口可能是圆形的,现在你可能要移动这个窗口到点集密度最大的区域当中。
如下图:
这里写图片描述

最开始的窗口是蓝色圆环的区域,命名为C1。蓝色圆环的重音用一个蓝色的矩形标注,命名为C1_o。

然而,你发现在这个窗口当中所有点的点集构成的质心在蓝色圆形点处。而且,圆环的型心和质心并不重合。所以,移动蓝色的窗口,使得型心与之前得到的质心重合。在新移动后的圆环的区域当中再次寻找圆环当中所包围点集的质心,然后再次移动,通常情况下,型心和质心是不重合的。不断执行上面的移动过程,直到型心和质心大致重合结束。
这样,最后圆形的窗口会落到像素分布最大的地方,也就是图中的绿色圈,命名为C2。


meanshift算法不仅仅限制在二维的图像处理问题当中,同样也可以使用于高维的数据处理。可以通过选取不同的核函数,来改变区域当中偏移向量的权重,最后meanshift算法的过程一定会收敛到某一个位置。(可证明)

meanshift算法除了应用在视频追踪当中,在聚类,平滑等等各种涉及到数据以及非监督学习的场合当中均有重要应用,是一个应用广泛的算法。

假如在二维环境当中,meanshift算法处理的数据是一群离散的二维点集,但是图像是一个矩阵信息,如何在一个视频当中使用meanshift算法来追踪一个运动的物体呢?

大致流程如下:

1.首先在图像上使用矩形框或者圆形框选定一个目标区域
2.计算选定好区域的直方图分布。
3.对下一帧图像b同样计算直方图分布。
4.计算图像b当中与选定区域直方图分布最为相似的区域,使用meanshift算法将选定区域沿着最为相似的部分进行移动。(样例当中使用的是直方图反向投影)
5.重复3到4的过程。


OpenCV中的meanshift算法:
在opencv中使用meanshift算法,首先要设定目标,找到它的直方图,然后可以对这个直方图在每一帧当中进行反向投影。我们需要提供一个初试的窗口位置,计算HSV模型当中H(色调)的直方图。为了避免低亮度造成的影响,使用 cv2.inRange()将低亮度值忽略。

import cv2
import numpy as np# 设置初始化的窗口位置
r,h,c,w = 0,100,0,100 # 设置初试窗口位置和大小
track_window = (c,r,w,h)cap = cv2.VideoCapture(0)ret, frame= cap.read()# 设置追踪的区域
roi = frame[r:r+h, c:c+w]
# roi区域的hsv图像
hsv_roi = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
# 取值hsv值在(0,60,32)到(180,255,255)之间的部分
mask = cv2.inRange(hsv_roi, np.array((0., 60.,32.)), np.array((180.,255.,255.)))
# 计算直方图,参数为 图片(可多),通道数,蒙板区域,直方图长度,范围
roi_hist = cv2.calcHist([hsv_roi],[0],mask,[180],[0,180])
# 归一化
cv2.normalize(roi_hist,roi_hist,0,255,cv2.NORM_MINMAX)# 设置终止条件,迭代10次或者至少移动1次
term_crit = ( cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1 )while(1):ret, frame = cap.read()if ret == True:# 计算每一帧的hsv图像hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)# 计算反向投影dst = cv2.calcBackProject([hsv],[0],roi_hist,[0,180],1)# 调用meanShift算法在dst中寻找目标窗口,找到后返回目标窗口ret, track_window = cv2.meanShift(dst, track_window, term_crit)# Draw it on imagex,y,w,h = track_windowimg2 = cv2.rectangle(frame, (x,y), (x+w,y+h), 255,2)cv2.imshow('img2',img2)if cv2.waitKey(1) & 0xFF == ord('q'):break
cap.release()
cv2.destroyAllWindows() 

没找到合适的小视频,用摄像头来代替,把左手放到视频的左上角,追踪自己左手=_=

效果不怎么样

这里写图片描述
这里写图片描述

CamShift算法:

在视频或者是摄像头当中,如果被追踪的物体迎面过来,由于透视效果,物体会放大。之前设置好的窗口区域大小会不合适。

OpenCV实验室实现了一个CAMshift算法,首先使用meanshift算法找到目标,然后调整窗口大小,而且还会计算目标对象的的最佳外接圆的角度,并调整窗口。并使用调整后的窗口对物体继续追踪。

使用方法与meanShift算法一样,不过返回的是一个带有旋转角度的矩形。

import cv2
import numpy as np# 设置初始化的窗口位置
r,h,c,w = 0,100,0,100 # 设置初试窗口位置和大小
track_window = (c,r,w,h)cap = cv2.VideoCapture(0)ret, frame= cap.read()# 设置追踪的区域
roi = frame[r:r+h, c:c+w]
# roi区域的hsv图像
hsv_roi = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
# 取值hsv值在(0,60,32)到(180,255,255)之间的部分
mask = cv2.inRange(hsv_roi, np.array((0., 60.,32.)), np.array((180.,255.,255.)))
# 计算直方图,参数为 图片(可多),通道数,蒙板区域,直方图长度,范围
roi_hist = cv2.calcHist([hsv_roi],[0],mask,[180],[0,180])
# 归一化
cv2.normalize(roi_hist,roi_hist,0,255,cv2.NORM_MINMAX)# 设置终止条件,迭代10次或者至少移动1次
term_crit = ( cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1 )while(1):ret, frame = cap.read()if ret == True:# 计算每一帧的hsv图像hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)# 计算反向投影dst = cv2.calcBackProject([hsv],[0],roi_hist,[0,180],1)# 调用meanShift算法在dst中寻找目标窗口,找到后返回目标窗口ret, track_window = cv2.CamShift(dst, track_window, term_crit)# Draw it on imagepts = cv2.boxPoints(ret)pts = np.int0(pts)img2 = cv2.polylines(frame,[pts],True, 255,2)cv2.imshow('img2',img2)if cv2.waitKey(1) & 0xFF == ord('q'):break
cap.release()
cv2.destroyAllWindows() 

这篇关于python opencv入门 Meanshift 和 Camshift 算法(40)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/840938

相关文章

Java Lettuce 客户端入门到生产的实现步骤

《JavaLettuce客户端入门到生产的实现步骤》本文主要介绍了JavaLettuce客户端入门到生产的实现步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 目录1 安装依赖MavenGradle2 最小化连接示例3 核心特性速览4 生产环境配置建议5 常见问题

使用python生成固定格式序号的方法详解

《使用python生成固定格式序号的方法详解》这篇文章主要为大家详细介绍了如何使用python生成固定格式序号,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... 目录生成结果验证完整生成代码扩展说明1. 保存到文本文件2. 转换为jsON格式3. 处理特殊序号格式(如带圈数字)4

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装