政安晨:【深度学习部署】—— TensorFlow Extended(TFX)介绍

2024-03-24 07:44

本文主要是介绍政安晨:【深度学习部署】—— TensorFlow Extended(TFX)介绍,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

政安晨的个人主页政安晨

欢迎 👍点赞✍评论⭐收藏

收录专栏政安晨的机器学习笔记

希望政安晨的博客能够对您有所裨益,如有不足之处,欢迎在评论区提出指正!

前言

TensorFlow Extended(TFX)是基于 TensorFlow 的谷歌生产规模机器学习平台。它提供了一个配置框架,用于表达由 TFX 组件组成的 ML 管道。TFX 管道可使用 Apache Airflow 和 Kubeflow 管道进行协调。组件本身以及与协调系统的集成都可以扩展。

TFX包括许多生产软件部署和最佳实践的需求:可伸缩性、一致性、可测试性、安全性,等等。

它从收集数据开始,然后是数据验证、特征工程、训练和服务。

谷歌已为管道的每个主要阶段创建了库,并且为各种部署目标提供了框架。TFX实现了一系列ML管道组件。这些通过为管道存储、配置和编制之类的事物创建水平层来实现。这些层对于管理和优化管道以及在其管道上运行的应用程序非常重要。

安装

pip install tfx

关于 TFX

TFX 是一个在生产环境中构建和管理机器学习工作流程的平台。

TFX 提供以下功能

用于构建机器学习流水线的工具包 TFX 流水线,您可以在多个平台上编排机器学习工作流,例如 Apache Airflow、Apache Beam 和 Kubeflow Pipelines 平台。

一组标准组件可用作流水线的一部分,或用作机器学习训练脚本的一部分。TFX 标准组件提供久经考验的功能,可帮助您轻松开始构建机器学习流程。

为许多标准组件提供基本功能的库您可以使用 TFX 库将此功能添加到自己的自定义组件中,也可以单独使用它们。

TFX 是一种基于 TensorFlow 的 Google 生产级机器学习工具包。 该平台提供了一个配置框架和众多共享库,用来集成定义、启动和监控机器学习系统所需的常见组件。

TFX管道

TFX管道由实现ML管道的一系列组件构成,特别是确保了带下划线的ML任务的可伸缩性和高性能。它包括建模、训练、推理以及部署到Web或移动目标。如下图所示:

TFX管道包含几个组件,每个组件都由三个主要元素组成:驱动程序、执行程序和发布程序。

驱动程序查询元数据存储,并将生成的元数据提供给执行程序,发布程序接受执行程序的结果,并将其保存在元数据中。

执行程序执行所有的处理。作为ML软件开发人员,你需要编写要在执行程序中运行的代码,这取决于你正在使用的组件类。

在TFX管道中,称为构件的数据单元在组件之间传递。

通常,一个组件有一个输入构件和一个输出构件。每个构件都有一个关联元数据,定义其类型和属性。构件类型定义了整个TFX系统中构件的本体,而构件属性则指定了特定于构件类型的本体。用户可以选择在全局或本地扩展本体。

TFX 标准组件

TFX 流水线是实现机器学习流水线的一系列组件,专门用于可扩容的高性能机器学习任务。这包括针对在线、原生移动和 JavaScript 目标建模、训练、运行推断和管理部署。

TFX 流水线通常包含以下组件:

  • ExampleGen:提取和拆分(可选)输入数据集的流水线的初始输入组件。

  • StatisticsGen:计算数据集的统计信息。

  • SchemaGen: 检查统计信息和创建数据架构。

  • ExampleValidator:查找数据集中的异常情况和缺失的值。

  • Transform:对数据集执行特征工程。

  • Trainer:训练模型。

  • Tuner:调整模型的超参数。

  • Evaluatior:对训练结果进行深入分析,并帮助您验证导出的模型,确保它们“效果足够好”,适合投放到生产环境。

  • InfraValidator:检查模型是否确实可以从基础架构提供服务,并防止投放不良模型。

  • Pusher:将模型部署到服务基础架构。

  • BulkInferrer:对存在无标签推断请求的模型执行批处理。

下图说明了这些组件之间的数据流:

TFX 库

TFX 同时包含库和流水线组件。

下图说明了 TFX 库与流水线组件之间的关系

TFX 提供了几个 Python 软件包,它们是用于创建流水线组件的库。您可以使用这些库创建流水线组件,以便您的代码侧重于流水线的独特环节。

使用 TFX 进行开发

从在本地机器上进行研究、实验和开发一直到部署,TFX 为机器学习项目的每个阶段都提供功能强大的平台。

为了避免代码重复和消除潜在的训练/应用偏差,我们强烈建议您实现 TFX 流水线,以便训练模型和部署经过训练的模型,并使用 Transform组件进行训练和推断,此类组件利用了 TensorFlow Transform库。

这样,您就可以始终如一地使用相同的预处理和分析代码,避免训练用到的数据与在生产环境中提供给经训练模型的数据之间存在差异,并且只需编写该代码一次。

部署目标

在开发并训练模型后,如果您对模型感到满意,可以将其部署到一个或多个部署目标,并在其中接收推断请求。TFX 支持部署到三类部署目标。以 SavedModel 格式导出的经训练模型可以部署到这些部署目标中的任意一个,也可以部署到所有这些部署目标。


本文仅仅是对TFX的一个介绍,为后续实施各类机器学习模型部署打下一个认知的基础而已。

已经了解相关概念的小伙伴们可以忽略本文

这篇关于政安晨:【深度学习部署】—— TensorFlow Extended(TFX)介绍的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/840914

相关文章

Spring Boot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)

《SpringBoot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)》:本文主要介绍SpringBoot拦截器Interceptor与过滤器Filter深度解析... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现与实

MyBatis分页插件PageHelper深度解析与实践指南

《MyBatis分页插件PageHelper深度解析与实践指南》在数据库操作中,分页查询是最常见的需求之一,传统的分页方式通常有两种内存分页和SQL分页,MyBatis作为优秀的ORM框架,本身并未提... 目录1. 为什么需要分页插件?2. PageHelper简介3. PageHelper集成与配置3.

Nginx使用Keepalived部署web集群(高可用高性能负载均衡)实战案例

《Nginx使用Keepalived部署web集群(高可用高性能负载均衡)实战案例》本文介绍Nginx+Keepalived实现Web集群高可用负载均衡的部署与测试,涵盖架构设计、环境配置、健康检查、... 目录前言一、架构设计二、环境准备三、案例部署配置 前端 Keepalived配置 前端 Nginx

Maven 插件配置分层架构深度解析

《Maven插件配置分层架构深度解析》:本文主要介绍Maven插件配置分层架构深度解析,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Maven 插件配置分层架构深度解析引言:当构建逻辑遇上复杂配置第一章 Maven插件配置的三重境界1.1 插件配置的拓扑

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示

ubuntu如何部署Dify以及安装Docker? Dify安装部署指南

《ubuntu如何部署Dify以及安装Docker?Dify安装部署指南》Dify是一个开源的大模型应用开发平台,允许用户快速构建和部署基于大语言模型的应用,ubuntu如何部署Dify呢?详细请... Dify是个不错的开源LLM应用开发平台,提供从 Agent 构建到 AI workflow 编排、RA

ubuntu16.04如何部署dify? 在Linux上安装部署Dify的技巧

《ubuntu16.04如何部署dify?在Linux上安装部署Dify的技巧》随着云计算和容器技术的快速发展,Docker已经成为现代软件开发和部署的重要工具之一,Dify作为一款优秀的云原生应用... Dify 是一个基于 docker 的工作流管理工具,旨在简化机器学习和数据科学领域的多步骤工作流。它

Java中 instanceof 的用法详细介绍

《Java中instanceof的用法详细介绍》在Java中,instanceof是一个二元运算符(类型比较操作符),用于检查一个对象是否是某个特定类、接口的实例,或者是否是其子类的实例,这篇文章... 目录引言基本语法基本作用1. 检查对象是否是指定类的实例2. 检查对象是否是子类的实例3. 检查对象是否

Nginx部署React项目时重定向循环问题的解决方案

《Nginx部署React项目时重定向循环问题的解决方案》Nginx在处理React项目请求时出现重定向循环,通常是由于`try_files`配置错误或`root`路径配置不当导致的,本文给大家详细介... 目录问题原因1. try_files 配置错误2. root 路径错误解决方法1. 检查 try_f

什么是ReFS 文件系统? ntfs和refs的优缺点区别介绍

《什么是ReFS文件系统?ntfs和refs的优缺点区别介绍》最近有用户在Win11Insider的安装界面中发现,可以使用ReFS来格式化硬盘,这是不是意味着,ReFS有望在未来成为W... 数十年以来,Windows 系统一直将 NTFS 作为「内置硬盘」的默认文件系统。不过近些年来,微软还在研发一款名