Spark SQL之External DataSource外部数据源

2024-03-21 06:59

本文主要是介绍Spark SQL之External DataSource外部数据源,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

http://blog.csdn.net/oopsoom/article/details/42061077

一、Spark SQL External DataSource简介

  随着Spark1.2的发布,Spark SQL开始正式支持外部数据源。Spark SQL开放了一系列接入外部数据源的接口,来让开发者可以实现。

  这使得Spark SQL支持了更多的类型数据源,如json, parquet, avro, csv格式。只要我们愿意,我们可以开发出任意的外部数据源来连接到Spark SQL。之前大家说的支持HBASE,Cassandra都可以用外部数据源的方式来实现无缝集成。 


二、External DataSource

  拿Spark1.2的json为例,它支持已经改为了实现了外部数据源的接口方式。所以除了先前我们操作json的API,又多了一种DDL创建外部数据源的方式。 

  parquetFile的操作方式也如下类似,就不一一列举了。

2.1 SQL方式 CREATE TEMPORARY TABLE USING OPTIONS

在Spark1.2之后,支持了一种CREATE TEMPORARY TABLE USING OPTIONS的DDL语法来创建外部数据源的表。

[sql]  view plain copy 在CODE上查看代码片 派生到我的代码片
  1. CREATE TEMPORARY TABLE jsonTable  
  2. USING org.apache.spark.sql.json  
  3. OPTIONS (  
  4.   path '/path/to/data.json'  
  5. )  

1、操作示例:

我们拿example下people.json文件来做示例。

[java]  view plain copy 在CODE上查看代码片 派生到我的代码片
  1. shengli-mac$ cat /Users/shengli/git_repos/spark/examples/src/main/resources/people.json  
  2. {"name":"Michael"}  
  3. {"name":"Andy""age":30}  
  4. {"name":"Justin""age":19}  
2、DDL创建外部数据源表jsonTable:

[java]  view plain copy 在CODE上查看代码片 派生到我的代码片
  1. 14/12/21 16:32:14 INFO repl.SparkILoop: Created spark context..  
  2. Spark context available as sc.  
  3.   
  4. scala> import org.apache.spark.sql.SQLContext  
  5. import org.apache.spark.sql.SQLContext  
  6.   
  7. scala> val sqlContext  = new SQLContext(sc)  
  8. sqlContext: org.apache.spark.sql.SQLContext = org.apache.spark.sql.SQLContext@7be62956  
  9.   
  10. scala> import sqlContext._  
  11. import sqlContext._  
  12. //创建jsonTable外部数据源表,并且指定其数数据源文件是people.json这个json文件,同时指定使用org.apache.spark.sql.json该类型的隐式转化类(这个后续文章会介绍)  
  13. scala> val jsonDDL = s"""  
  14.      | |CREATE TEMPORARY TABLE jsonTable  
  15.      | |USING org.apache.spark.sql.json  
  16.      | |OPTIONS (  
  17.      | | path  'file:///Users/shengli/git_repos/spark/examples/src/main/resources/people.json'  
  18.      | |)""".stripMargin  
  19. jsonDDL: String =   
  20. "  
  21. CREATE TEMPORARY TABLE jsonTable  
  22. USING org.apache.spark.sql.json  
  23. OPTIONS (  
  24.  path  'file:///Users/shengli/git_repos/spark/examples/src/main/resources/people.json'  
  25. )"  
  26.   
  27. scala> sqlContext.sql(jsonDDL).collect() //创建该外部数据源表jsonTable  
  28. 14/12/21 16:44:27 INFO scheduler.DAGScheduler: Job 0 finished: reduce at JsonRDD.scala:57, took 0.204461 s  
  29. res0: Array[org.apache.spark.sql.Row] = Array()  

我们来看下该schemaRDD:

[java]  view plain copy 在CODE上查看代码片 派生到我的代码片
  1. scala> val jsonSchema = sqlContext.sql(jsonDDL)  
  2. jsonSchema: org.apache.spark.sql.SchemaRDD =   
  3. SchemaRDD[7] at RDD at SchemaRDD.scala:108  
  4. == Query Plan ==  
  5. == Physical Plan ==  
  6. ExecutedCommand (CreateTableUsing jsonTable, org.apache.spark.sql.json, Map(path -> file:///Users/shengli/git_repos/spark/examples/src/main/resources/people.json))  

ExecutedCommand来取把数据用spark.sql.json的方式从path加载到jsonTable中。涉及到得类是CreateTableUsing,后续源码分析会讲到。

各阶段执行计划情况:

[java]  view plain copy 在CODE上查看代码片 派生到我的代码片
  1. scala> sqlContext.sql("select * from jsonTable").queryExecution  
  2. res6: org.apache.spark.sql.SQLContext#QueryExecution =   
  3. == Parsed Logical Plan ==  
  4. 'Project [*]  
  5.  'UnresolvedRelation None, jsonTable, None  
  6.   
  7. == Analyzed Logical Plan ==  
  8. Project [age#0,name#1]  
  9.  Relation[age#0,name#1] JSONRelation(file:///Users/shengli/git_repos/spark/examples/src/main/resources/people.json,1.0)  
  10.   
  11. == Optimized Logical Plan ==  
  12. Relation[age#0,name#1] JSONRelation(file:///Users/shengli/git_repos/spark/examples/src/main/resources/people.json,1.0)  
  13.   
  14. == Physical Plan ==  
  15. PhysicalRDD [age#0,name#1], MapPartitionsRDD[27] at map at JsonRDD.scala:47  
  16.   
  17. Code Generation: false  
  18. == RDD ==  

至此,创建加载外部数据源到Spark SQL已经完成。

我们可以使用任何我们希望的方式来查询:

3、SQL查询方式:

[java]  view plain copy 在CODE上查看代码片 派生到我的代码片
  1. scala> sqlContext.sql("select * from jsonTable")  
  2. 21 16:52:13 INFO spark.SparkContext: Created broadcast 6 from textFile at JSONRelation.scala:39  
  3. res2: org.apache.spark.sql.SchemaRDD =   
  4. SchemaRDD[20] at RDD at SchemaRDD.scala:108  
  5. == Query Plan ==  
  6. == Physical Plan ==  
  7. PhysicalRDD [age#2,name#3], MapPartitionsRDD[24] at map at JsonRDD.scala:47  

执行查询:

scala> sqlContext.sql("select * from jsonTable").collect()
res1: Array[org.apache.spark.sql.Row] = Array([null,Michael], [30,Andy], [19,Justin])
 

2.2 API方式

sqlContext.jsonFile

[java]  view plain copy 在CODE上查看代码片 派生到我的代码片
  1. scala> val json = sqlContext.jsonFile("file:///Users/shengli/git_repos/spark/examples/src/main/resources/people.json")  
  2. scala> json.registerTempTable("jsonFile")  
  3.   
  4. scala> sql("select * from jsonFile").collect()  
  5. res2: Array[org.apache.spark.sql.Row] = Array([null,Michael], [30,Andy], [19,Justin])  

  总的来说,Spark SQL 在努力的向各种数据源靠拢,希望让Spark SQL能和其它许多类型的数据源的集成。

  Spark SQL提供的了一种创建加载外部数据源表的DDL语法:CREATE TEMPORARY TABLE USING OPTIONS

  Spark SQL对外开放了一系列的扩展接口,能够通过实现这些接口,来实现对不同的数据源接入,如avro, csv, parquet,json, etc


三、Sources包核心

    Spark SQL在Spark1.2中提供了External DataSource API,开发者可以根据接口来实现自己的外部数据源,如avro, csv, json, parquet等等。

    在Spark SQL源代码的org/spark/sql/sources目录下,我们会看到关于External DataSource的相关代码。这里特别介绍几个:

    1、DDLParser 

    专门负责解析外部数据源SQL的SqlParser,解析create temporary table xxx using options (key 'value', key 'value') 创建加载外部数据源表的语句。

[java]  view plain copy 在CODE上查看代码片 派生到我的代码片
  1. protected lazy val createTable: Parser[LogicalPlan] =  
  2.    CREATE ~ TEMPORARY ~ TABLE ~> ident ~ (USING ~> className) ~ (OPTIONS ~> options) ^^ {  
  3.      case tableName ~ provider ~ opts =>  
  4.        CreateTableUsing(tableName, provider, opts)  
  5.    }  

    2、CreateTableUsing

   一个RunnableCommand,通过反射从外部数据源lib中实例化Relation,然后注册到为temp table。

[java]  view plain copy 在CODE上查看代码片 派生到我的代码片
  1. private[sql] case class CreateTableUsing(  
  2.     tableName: String,  
  3.     provider: String,  // org.apache.spark.sql.json   
  4.     options: Map[String, String]) extends RunnableCommand {  
  5.   
  6.   def run(sqlContext: SQLContext) = {  
  7.     val loader = Utils.getContextOrSparkClassLoader  
  8.     val clazz: Class[_] = try loader.loadClass(provider) catch { //do reflection  
  9.       case cnf: java.lang.ClassNotFoundException =>  
  10.         try loader.loadClass(provider + ".DefaultSource"catch {  
  11.           case cnf: java.lang.ClassNotFoundException =>  
  12.             sys.error(s"Failed to load class for data source: $provider")  
  13.         }  
  14.     }  
  15.     val dataSource = clazz.newInstance().asInstanceOf[org.apache.spark.sql.sources.RelationProvider] //json包DefaultDataSource  
  16.     val relation = dataSource.createRelation(sqlContext, new CaseInsensitiveMap(options))//创建JsonRelation  
  17.   
  18.     sqlContext.baseRelationToSchemaRDD(relation).registerTempTable(tableName)//注册  
  19.     Seq.empty  
  20.   }  
  21. }  

    2、DataSourcesStrategy

    在 Strategy 一文中,我已讲过Streategy的作用,用来Plan生成物理计划的。这里提供了一种专门为了解析外部数据源的策略。

    最后会根据不同的BaseRelation生产不同的PhysicalRDD。不同的BaseRelation的scan策略下文会介绍。

[java]  view plain copy 在CODE上查看代码片 派生到我的代码片
  1. private[sql] object DataSourceStrategy extends Strategy {  
  2.   def apply(plan: LogicalPlan): Seq[SparkPlan] = plan match {  
  3.     case PhysicalOperation(projectList, filters, l @ LogicalRelation(t: CatalystScan)) =>  
  4.       pruneFilterProjectRaw(  
  5.         l,  
  6.         projectList,  
  7.         filters,  
  8.         (a, f) => t.buildScan(a, f)) :: Nil  
  9.     ......  
  10.     case l @ LogicalRelation(t: TableScan) =>  
  11.       execution.PhysicalRDD(l.output, t.buildScan()) :: Nil  
  12.   
  13.     case _ => Nil  
  14.   }  
    3、interfaces.scala  

    该文件定义了一系列可扩展的外部数据源接口,对于想要接入的外部数据源,我们只需实现该接口即可。里面比较重要的trait RelationProvider 和 BaseRelation,下文会详细介绍。

    4、filters.scala

    该Filter定义了如何在加载外部数据源的时候,就进行过滤。注意哦,是加载外部数据源到Table里的时候,而不是Spark里进行filter。这个有点像hbase的coprocessor,查询过滤在Server上就做了,不在Client端做过滤。

   5、LogicalRelation

   封装了baseRelation,继承了catalyst的LeafNode,实现MultiInstanceRelation。

        

四、External DataSource注册流程

用spark sql下sql/json来做示例, 画了一张流程图,如下:



注册外部数据源的表的流程:
1、提供一个外部数据源文件,比如json文件。
2、提供一个实现了外部数据源所需要的interfaces的类库,比如sql下得json包,在1.2版本后改为了External Datasource实现。
3、引入SQLContext,使用DDL创建表,如create temporary table xxx using options (key 'value', key 'value') 
4、External Datasource的DDLParser将对该SQL进行Parse
5、Parse后封装成为一个CreateTableUsing类的对象。该类是一个RunnableCommand,其run方法会直接执行创建表语句。
6、该类会通过反射来创建一个org.apache.spark.sql.sources.RelationProvider,该trait定义要createRelation,如json,则创建JSONRelation,若avro,则创建AvroRelation。
7、得到external releation后,直接调用SQLContext的baseRelationToSchemaRDD转换为SchemaRDD
8、最后registerTempTable(tableName) 来注册为Table,可以用SQL来查询了。

五、External DataSource解析流程

先看图,图如下:


Spark SQL解析SQL流程如下:
1、Analyzer通过Rule解析,将UnresolvedRelation解析为JsonRelation。
2、通过Parse,Analyzer,Optimizer最后得到JSONRelation(file:///path/to/shengli.json,1.0)  
3、通过sources下得DataSourceStrategy将LogicalPlan映射到物理计划PhysicalRDD。
4、PhysicalRDD里包含了如何查询外部数据的规则,可以调用execute()方法来执行Spark查询。

六、External Datasource Interfaces

在第一节我已经介绍过,主要的interfaces,主要看一下BaseRelation和RelationProvider。
如果我们要实现一个外部数据源,比如avro数据源,支持spark sql操作avro file。那么久必须定义AvroRelation来继承BaseRelation。同时也要实现一个RelationProvider。


BaseRelation:
是外部数据源的抽象,里面存放了 schema的映射,和 如何scan数据的规则
[java]  view plain copy 在CODE上查看代码片 派生到我的代码片
  1. abstract class BaseRelation {  
  2.   def sqlContext: SQLContext  
  3.   def schema: StructType  
[java]  view plain copy 在CODE上查看代码片 派生到我的代码片
  1. abstract class PrunedFilteredScan extends BaseRelation {  
  2.   def buildScan(requiredColumns: Array[String], filters: Array[Filter]): RDD[Row]  
  3. }  

1、schema我们如果自定义Relation,必须重写schema,就是我们必须描述对于外部数据源的Schema。
2、buildScan我们定义如何查询外部数据源,提供了4种Scan的策略,对应4种BaseRelation。


我们支持4种BaseRelation,分为TableScan, PrunedScan,PrunedFilterScan,CatalystScan。
1、 TableScan
默认的Scan策略。
2、 PrunedScan
这里可以传入指定的列,requiredColumns,列裁剪,不需要的列不会从外部数据源加载。
3、 PrunedFilterScan
在列裁剪的基础上,并且加入Filter机制,在加载数据也的时候就进行过滤,而不是在客户端请求返回时做Filter。
4、 CatalystScan
Catalyst的支持传入expressions来进行Scan。支持列裁剪和Filter。

RelationProvider:
我们要实现这个,接受Parse后传入的参数,来生成对应的External Relation,就是一个反射生产外部数据源Relation的接口。
[java]  view plain copy 在CODE上查看代码片 派生到我的代码片
  1. trait RelationProvider {  
  2.   /** 
  3.    * Returns a new base relation with the given parameters. 
  4.    * Note: the parameters' keywords are case insensitive and this insensitivity is enforced 
  5.    * by the Map that is passed to the function. 
  6.    */  
  7.   def createRelation(sqlContext: SQLContext, parameters: Map[String, String]): BaseRelation  
  8. }  

七、External Datasource定义示例

在Spark1.2之后,json和parquet也改为通过实现External API来进行外部数据源查询的。
下面以json的外部数据源定义为示例,说明是如何实现的:


1、JsonRelation

定义处理对于json文件的,schema和Scan策略,均基于JsonRDD,细节可以自行阅读JsonRDD。

[java]  view plain copy 在CODE上查看代码片 派生到我的代码片
  1. private[sql] case class JSONRelation(fileName: String, samplingRatio: Double)(  
  2.     @transient val sqlContext: SQLContext)  
  3.   extends TableScan {  
  4.   
  5.   private def baseRDD = sqlContext.sparkContext.textFile(fileName) //读取json file  
  6.   
  7.   override val schema =  
  8.     JsonRDD.inferSchema(  // jsonRDD的inferSchema方法,能自动识别json的schema,和类型type。  
  9.       baseRDD,  
  10.       samplingRatio,  
  11.       sqlContext.columnNameOfCorruptRecord)  
  12.   
  13.   override def buildScan() =  
  14.     JsonRDD.jsonStringToRow(baseRDD, schema, sqlContext.columnNameOfCorruptRecord) //这里还是JsonRDD,调用jsonStringToRow查询返回Row  
  15. }  

2、DefaultSource
parameters中可以获取到options中传入的path等自定义参数。
这里接受传入的参数,来狗仔JsonRelation。
[java]  view plain copy 在CODE上查看代码片 派生到我的代码片
  1. private[sql] class DefaultSource extends RelationProvider {  
  2.   /** Returns a new base relation with the given parameters. */  
  3.   override def createRelation(  
  4.       sqlContext: SQLContext,  
  5.       parameters: Map[String, String]): BaseRelation = {  
  6.     val fileName = parameters.getOrElse("path", sys.error("Option 'path' not specified"))  
  7.     val samplingRatio = parameters.get("samplingRatio").map(_.toDouble).getOrElse(1.0)  
  8.   
  9.     JSONRelation(fileName, samplingRatio)(sqlContext)  
  10.   }  
  11. }  

八、总结
External DataSource源码分析下来,可以总结为3部分。
1、外部数据源的注册流程
2、外部数据源Table查询的计划解析流程
3、如何自定义一个外部数据源,重写BaseRelation定义外部数据源的schema和scan的规则。定义RelationProvider,如何生成外部数据源Relation。
External Datasource此部分API还有可能在后续的build中改动,目前只是涉及到了查询,关于其它的操作还未涉及。
——EOF——

原创文章,转载请注明:

转载自:OopsOutOfMemory盛利的Blog,作者: OopsOutOfMemory

本文链接地址:http://blog.csdn.net/oopsoom/article/details/42064075  

注:本文基于署名-非商业性使用-禁止演绎 2.5 中国大陆(CC BY-NC-ND 2.5 CN)协议,欢迎转载、转发和评论,但是请保留本文作者署名和文章链接。如若需要用于商业目的或者与授权方面的协商,请联系我。

image



这篇关于Spark SQL之External DataSource外部数据源的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/832040

相关文章

MySQL数据库双机热备的配置方法详解

《MySQL数据库双机热备的配置方法详解》在企业级应用中,数据库的高可用性和数据的安全性是至关重要的,MySQL作为最流行的开源关系型数据库管理系统之一,提供了多种方式来实现高可用性,其中双机热备(M... 目录1. 环境准备1.1 安装mysql1.2 配置MySQL1.2.1 主服务器配置1.2.2 从

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

mysql8.0.43使用InnoDB Cluster配置主从复制

《mysql8.0.43使用InnoDBCluster配置主从复制》本文主要介绍了mysql8.0.43使用InnoDBCluster配置主从复制,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录1、配置Hosts解析(所有服务器都要执行)2、安装mysql shell(所有服务器都要执行)3、

k8s中实现mysql主备过程详解

《k8s中实现mysql主备过程详解》文章讲解了在K8s中使用StatefulSet部署MySQL主备架构,包含NFS安装、storageClass配置、MySQL部署及同步检查步骤,确保主备数据一致... 目录一、k8s中实现mysql主备1.1 环境信息1.2 部署nfs-provisioner1.2.

MySQL中VARCHAR和TEXT的区别小结

《MySQL中VARCHAR和TEXT的区别小结》MySQL中VARCHAR和TEXT用于存储字符串,VARCHAR可变长度存储在行内,适合短文本;TEXT存储在溢出页,适合大文本,下面就来具体的了解... 目录一、VARCHAR 和 TEXT 基本介绍1. VARCHAR2. TEXT二、VARCHAR

MySQL中C接口的实现

《MySQL中C接口的实现》本节内容介绍使用C/C++访问数据库,包括对数据库的增删查改操作,主要是学习一些接口的调用,具有一定的参考价值,感兴趣的可以了解一下... 目录准备mysql库使用mysql库编译文件官方API文档对象的创建和关闭链接数据库下达sql指令select语句前言:本节内容介绍使用C/

mybatis直接执行完整sql及踩坑解决

《mybatis直接执行完整sql及踩坑解决》MyBatis可通过select标签执行动态SQL,DQL用ListLinkedHashMap接收结果,DML用int处理,注意防御SQL注入,优先使用#... 目录myBATiFBNZQs直接执行完整sql及踩坑select语句采用count、insert、u

MySQL之搜索引擎使用解读

《MySQL之搜索引擎使用解读》MySQL存储引擎是数据存储和管理的核心组件,不同引擎(如InnoDB、MyISAM)采用不同机制,InnoDB支持事务与行锁,适合高并发场景;MyISAM不支持事务,... 目录mysql的存储引擎是什么MySQL存储引擎的功能MySQL的存储引擎的分类查看存储引擎1.命令

一文详解MySQL索引(六张图彻底搞懂)

《一文详解MySQL索引(六张图彻底搞懂)》MySQL索引的建立对于MySQL的高效运行是很重要的,索引可以大大提高MySQL的检索速度,:本文主要介绍MySQL索引的相关资料,文中通过代码介绍的... 目录一、什么是索引?为什么需要索引?二、索引该用哪种数据结构?1. 哈希表2. 跳表3. 二叉排序树4.

MySQL批量替换数据库字符集的实用方法(附详细代码)

《MySQL批量替换数据库字符集的实用方法(附详细代码)》当需要修改数据库编码和字符集时,通常需要对其下属的所有表及表中所有字段进行修改,下面:本文主要介绍MySQL批量替换数据库字符集的实用方法... 目录前言为什么要批量修改字符集?整体脚本脚本逻辑解析1. 设置目标参数2. 生成修改表默认字符集的语句3