实地研究降本增效的杀伤力,LSTM算法实现全国失业率分析预测

本文主要是介绍实地研究降本增效的杀伤力,LSTM算法实现全国失业率分析预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

降本增效=降本增笑?增不增效暂且不清楚,但是这段时间大厂的产品频繁出现服务器宕机和产品BUG确实是十分增笑。目前来看降本增效这一理念还会不断渗透到各行各业,不单单只是互联网这块了,那么对于目前就业最为严峻的一段时期,我们能够对失业率有个全面的了解是最好的情况,所以基于此理念我们来拟定一个失业率预测分析这一微项目。

我们将会从数据获取–数据处理–LSTM建模–预测检测这四个流程依次进行最终得到一个较为合理准确的数据,当然该预测率的准确度是依赖获取到的官方数据的,至于数据真实性这个不作过多解释~大家只要了解建模过程如何和LSTM模型如何使用就好。

博主现任高级人工智能工程师,理解各类模型原理以及每种模型的建模流程和各类题目分析方法。写文章的目的就是为了让零基础快速使用各类代码模型,保证每篇文章都为用心撰写。

且每篇文章我都会尽可能将简化涉及到垂直领域的专业知识,转化为大众小白可以读懂易于理解的知识,将繁杂的程序创建步骤逐个拆解,以逐步递进的方式由难转易逐渐掌握并实践,欢迎各位学习者关注博主,博主将不断创作技术实用前沿文章。

数据获取

不查不知道,一查确实还是挺有意思的数据,想要获取官方数据可以直接访问国家数据网站。
全国失业率统计数据因为是官方的数据所以就默认为真实情况,就不用进行数据清洗工程了。

数据预览

# 转换为DataFrame
df = pd.DataFrame(data)# 将日期转换为时间序列,并设为索引
df['日期'] = pd.to_datetime(df['日期'], format='%Y年%m月')
df.set_index('日期', inplace=True)# 由于数据是逆序的,我们需要将其反转以正确地展示时间序列
df = df.iloc[::-1]df

请在此添加图片描述

我们再来数据可视化帮我们更具体的看清楚整个数据的全貌:

# 绘制线图
plt.figure(figsize=(10, 6))  # 设置图形大小
plt.plot(df.index, df['全国城镇调查失业率(%)'], marker='o', label='全国城镇调查失业率(%)')
plt.plot(df.index, df['全国城镇本地户籍劳动力失业率(%)'], marker='s', label='全国城镇本地户籍劳动力失业率(%)')
plt.plot(df.index, df['全国城镇外来户籍劳动力失业率(%)'], marker='^', label='全国城镇外来户籍劳动力失业率(%)')# 设置图表标题和标签
plt.title('不同类型失业率的时间序列变化')
plt.xlabel('日期')
plt.ylabel('失业率(%)')
plt.xticks(rotation=45)  # 旋转x轴标签以避免重叠
plt.legend()  # 显示图例# 显示图表
plt.tight_layout()  # 自动调整子图参数, 使之填充整个图像区域
plt.show()

请在此添加图片描述

LSTM建模

请在此添加图片描述

那么现在我们可以来预测未来三个月的失业率到底如何,构建一个LSTM模型来预测未来三个月的失业率是一个典型的时间序列预测任务。使用PyTorch框架进行此类预测需要几个步骤:数据预处理、定义LSTM模型、训练模型、以及最后的预测。下面我会概述这个过程的每个步骤,并提供相应的示例代码。

步骤 1: 数据预处理

时间序列预测的第一步通常涉及到数据的预处理,包括标准化/归一化数据和创建适合于监督学习的时间序列数据集。

from sklearn.preprocessing import MinMaxScaler
import numpy as np
import torch# 假设df是包含失业率时间序列的DataFrame# 选择一个列作为预测目标
data = df['全国城镇调查失业率(%)'].values.reshape(-1, 1)# 数据标准化
scaler = MinMaxScaler(feature_range=(-1, 1))
data_normalized = scaler.fit_transform(data)# 创建数据集
def create_dataset(data, look_back=1):dataX, dataY = [], []for i in range(len(data)-look_back):a = data[i:(i+look_back), 0]dataX.append(a)dataY.append(data[i + look_back, 0])return np.array(dataX), np.array(dataY)look_back = 3  # 使用3个月的数据来预测下一个月
X, y = create_dataset(data_normalized, look_back)
X = X.reshape(X.shape[0], 1, X.shape[1])  # 为了LSTM输入,需要转换为[samples, time steps, features]# 转换为PyTorch张量
X_torch = torch.from_numpy(X).float()
y_torch = torch.from_numpy(y).float()

步骤 2: 定义LSTM模型

在PyTorch中定义一个简单的LSTM模型。

import torch.nn as nnclass LSTMModel(nn.Module):def __init__(self, input_size=1, hidden_layer_size=100, output_size=1):super().__init__()self.hidden_layer_size = hidden_layer_sizeself.lstm = nn.LSTM(input_size, hidden_layer_size)self.linear = nn.Linear(hidden_layer_size, output_size)self.hidden_cell = (torch.zeros(1,1,self.hidden_layer_size),torch.zeros(1,1,self.hidden_layer_size))def forward(self, input_seq):lstm_out, self.hidden_cell = self.lstm(input_seq.view(len(input_seq) ,1, -1), self.hidden_cell)predictions = self.linear(lstm_out.view(len(input_seq), -1))return predictions[-1]

步骤 3: 训练模型

接下来,定义训练循环来训练LSTM模型。

model = LSTMModel(input_size=3, hidden_layer_size=100, output_size=1)  # 确保这里的参数与你的数据匹配
loss_function = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)epochs = 150
for epoch in range(epochs):total_loss = 0for seq, labels in zip(X_torch, y_torch):optimizer.zero_grad()# 根据修改后的模型,不再需要外部初始化hidden_celly_pred = model(seq.unsqueeze(0))  # 增加一个批次维度single_loss = loss_function(y_pred, labels.unsqueeze(0))  # 标签也需要增加一个批次维度single_loss.backward()optimizer.step()total_loss += single_loss.item()if epoch % 25 == 0:print(f'epoch: {epoch:3} loss: {total_loss/len(X_torch):10.8f}')

训练误差:

epoch:   0 loss: 0.50735911
epoch:  25 loss: 0.09428047
epoch:  50 loss: 0.08110558
epoch:  75 loss: 0.06782570
epoch: 100 loss: 0.05745859
epoch: 125 loss: 0.05270799

模型预测

基于前面讨论的步骤和代码,使用训练好的LSTM模型和最近几个月的数据来预测未来三个月的失业率。这个过程大致分为以下几步:

  1. 使用最近的数据:基于look_back参数,从最新的数据开始预测。
  2. 进行预测:利用模型预测下一个时间点的值。
  3. 更新输入数据:将预测值添加到输入数据中,用于下一步的预测。
  4. 重复预测过程:重复步骤2和3,直到预测了所需的未来时间点的数据。
# 如果look_back=3,我们取最后3个已知时间点的数据
input_data_normalized = data_normalized[-look_back:].reshape((1, 1, look_back))# 转换为PyTorch张量
input_data_tensor = torch.from_numpy(input_data_normalized).float()# 存储预测结果
predictions_normalized = []# 进行未来三个月的预测
for _ in range(3):  # 预测未来三个月with torch.no_grad():  # 不计算梯度# 预测下一个时间点pred = model(input_data_tensor)predictions_normalized.append(pred.numpy().flatten()[0])  # 存储预测结果# 更新输入数据input_data_tensor = torch.cat((input_data_tensor[:, :, 1:], pred.unsqueeze(0)), dim=2)# 将预测结果逆标准化
predictions = scaler.inverse_transform(np.array(predictions_normalized).reshape(-1, 1))print("预测的未来三个月失业率:", predictions.flatten())
预测的未来三个月失业率: [5.226562  5.1846743 5.1323695]

这个过程假定input_data_normalized包含了用于开始预测的最后look_back个时间点的数据,已经是标准化形式。每次预测后,我们都会更新这个输入数据,将最新的预测值添加进去,同时移除最旧的数据点,以便于下一次预测。预测完成后,我们使用与训练数据相同的MinMaxScaler实例scaler来逆标准化预测结果,以获取原始尺度上的预测值。

确保在进行预测之前,model已经在相似的数据上训练并且达到了满意的性能。预测的这个值大家看个乐呵就行不要太较真~

点关注,防走丢,如有纰漏之处,请留言指教,非常感谢

以上就是本期全部内容。我是fanstuck ,有问题大家随时留言讨论 ,我们下期见。

这篇关于实地研究降本增效的杀伤力,LSTM算法实现全国失业率分析预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/826595

相关文章

C#借助Spire.XLS for .NET实现在Excel中添加文档属性

《C#借助Spire.XLSfor.NET实现在Excel中添加文档属性》在日常的数据处理和项目管理中,Excel文档扮演着举足轻重的角色,本文将深入探讨如何在C#中借助强大的第三方库Spire.... 目录为什么需要程序化添加Excel文档属性使用Spire.XLS for .NET库实现文档属性管理Sp

Python+FFmpeg实现视频自动化处理的完整指南

《Python+FFmpeg实现视频自动化处理的完整指南》本文总结了一套在Python中使用subprocess.run调用FFmpeg进行视频自动化处理的解决方案,涵盖了跨平台硬件加速、中间素材处理... 目录一、 跨平台硬件加速:统一接口设计1. 核心映射逻辑2. python 实现代码二、 中间素材处

Java数组动态扩容的实现示例

《Java数组动态扩容的实现示例》本文主要介绍了Java数组动态扩容的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1 问题2 方法3 结语1 问题实现动态的给数组添加元素效果,实现对数组扩容,原始数组使用静态分配

Spring Boot Interceptor的原理、配置、顺序控制及与Filter的关键区别对比分析

《SpringBootInterceptor的原理、配置、顺序控制及与Filter的关键区别对比分析》本文主要介绍了SpringBoot中的拦截器(Interceptor)及其与过滤器(Filt... 目录前言一、核心功能二、拦截器的实现2.1 定义自定义拦截器2.2 注册拦截器三、多拦截器的执行顺序四、过

Python实现快速扫描目标主机的开放端口和服务

《Python实现快速扫描目标主机的开放端口和服务》这篇文章主要为大家详细介绍了如何使用Python编写一个功能强大的端口扫描器脚本,实现快速扫描目标主机的开放端口和服务,感兴趣的小伙伴可以了解下... 目录功能介绍场景应用1. 网络安全审计2. 系统管理维护3. 网络故障排查4. 合规性检查报错处理1.

Python轻松实现Word到Markdown的转换

《Python轻松实现Word到Markdown的转换》在文档管理、内容发布等场景中,将Word转换为Markdown格式是常见需求,本文将介绍如何使用FreeSpire.DocforPython实现... 目录一、工具简介二、核心转换实现1. 基础单文件转换2. 批量转换Word文件三、工具特性分析优点局

Springboot3统一返回类设计全过程(从问题到实现)

《Springboot3统一返回类设计全过程(从问题到实现)》文章介绍了如何在SpringBoot3中设计一个统一返回类,以实现前后端接口返回格式的一致性,该类包含状态码、描述信息、业务数据和时间戳,... 目录Spring Boot 3 统一返回类设计:从问题到实现一、核心需求:统一返回类要解决什么问题?

Java使用Spire.Doc for Java实现Word自动化插入图片

《Java使用Spire.DocforJava实现Word自动化插入图片》在日常工作中,Word文档是不可或缺的工具,而图片作为信息传达的重要载体,其在文档中的插入与布局显得尤为关键,下面我们就来... 目录1. Spire.Doc for Java库介绍与安装2. 使用特定的环绕方式插入图片3. 在指定位

Java使用Spire.Barcode for Java实现条形码生成与识别

《Java使用Spire.BarcodeforJava实现条形码生成与识别》在现代商业和技术领域,条形码无处不在,本教程将引导您深入了解如何在您的Java项目中利用Spire.Barcodefor... 目录1. Spire.Barcode for Java 简介与环境配置2. 使用 Spire.Barco

Java利用Spire.Doc for Java实现在模板的基础上创建Word文档

《Java利用Spire.DocforJava实现在模板的基础上创建Word文档》在日常开发中,我们经常需要根据特定数据动态生成Word文档,本文将深入探讨如何利用强大的Java库Spire.Do... 目录1. Spire.Doc for Java 库介绍与安装特点与优势Maven 依赖配置2. 通过替换