目标检测——PP-YOLO算法解读

2024-03-19 14:28
文章标签 算法 目标 检测 yolo 解读 pp

本文主要是介绍目标检测——PP-YOLO算法解读,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

PP-YOLO系列,均是基于百度自研PaddlePaddle深度学习框架发布的算法,2020年基于YOLOv3改进发布PP-YOLO,2021年发布PP-YOLOv2和移动端检测算法PP-PicoDet,2022年发布PP-YOLOE和PP-YOLOE-R。由于均是一个系列,所以放一起解读,方便对比前后改进地方。


PP-YOLO系列算法解读:

  • PP-YOLO算法解读
  • PP-YOLOv2算法解读
  • PP-PicoDet算法解读
  • PP-YOLOE算法解读

YOLO系列算法解读:

  • YOLOv1通俗易懂版解读
  • SSD算法解读
  • YOLOv2算法解读
  • YOLOv3算法解读
  • YOLOv4算法解读
  • YOLOv5算法解读

文章目录

  • 1、算法概述
  • 2、PP-YOLO细节
    • 2.1 Selection of Tricks
  • 3、实验
    • 3.1 消融实验
    • 3.2 与其他检测算法比较


PP-YOLO(2020.7.23)

论文:PP-YOLO: An Effective and Efficient Implementation of Object Detector
作者:Xiang Long, Kaipeng Deng, Guanzhong Wang, Yang Zhang, Qingqing Dang, Yuan Gao, Hui Shen, Jianguo Ren, Shumin Han, Errui Ding, Shilei Wen
链接:https://arxiv.org/abs/2007.12099
代码:https://github.com/PaddlePaddle/PaddleDetection


1、算法概述

直接从论文摘要可以看出,PP-YOLO的目标是想实现一种可以直接应用于实际应用场景的检测精度和检测速度相对平衡的目标检测器,而不是提出一种新的检测模型。鉴于YOLOv3在实际中得到了广泛的应用,所以PP-YOLO的作者基于YOLOv3开发新型目标检测器。作者主要尝试结合现有的各种几乎不增加模型参数和FLOPs数量的技巧(看到这里有点像YOLOv4利用BoF改进啊!!!),以达到在保证速度几乎不变的情况下尽可能提高检测器精度的目的。由于本文中所有的实验都是基于百度的PaddlePaddle框架进行的,所以算法被命名为PP-YOLO。通过结合多种技巧,PP-YOLO在COCO上达到45.2%mAP和72.9FPS。上图:
在这里插入图片描述
与YOLOv4不同,PP-YOLO没有探索不同的骨干网络和数据增强方法,也没有使用NAS查询超参数。对于骨干网,作者直接使用最常见的ResNet作为PP-YOLO的骨干网。对于数据增强,直接使用最基本的MixUp。一个原因是ResNet的使用更加广泛,各种深度学习框架都针对ResNet系列进行了深度优化,在实际部署中会更加方便,在实践中会有更好的推断速度。另一个原因是主干的替换和数据增强是相对独立的因素,几乎与所讨论的技巧无关。


2、PP-YOLO细节

检测算法分为backbone、neck和head三个部分,PP-YOLO基于YOLOv3进行改进,改进地方可以直接从文中网络框图看出,下面分别进行阐述:
在这里插入图片描述
从图中可以看出,主要改进点在neck和head部分。有紫色三角块,黄色方块和红色星星作为改进插入点。
紫色三角块代表DropBlock
黄色方块代表CoordConv
红色星星代表SPP

Backbone部分:
PP-YOLO将YOLOv3的DarkNet-53替换成ResNet50-vd-dcn。由于直接替换成ResNet50-vd会掉点,所以将最后一个stage的3x3卷积替换成了DCN(Deformable Convolutional Networks,可变形卷积)。用来做预测的特征图为C3,C4,C5。

Neck部分:
拿Backbone输出的C3,C4,C5特征图应用FPN,其中FPN经过DropBlock、CoordConv和SPP改进。

Head部分:
和YOLOv3一样,分三个特征图输出,每个特征图每个网格设置3个anchor,每个网格位置输出3x(k+5),对于NxN大小的特征图输出为NxNx3x(k+5)的tensor。唯一改进的地方为在最后预测层3x3卷积中加入CoordConv。

2.1 Selection of Tricks

  • Larger Batch Size: 大的batchsize可以增加训练稳定性得到更好的结果。将batchsize由64变成192。
  • EMA: 在训练模型时,保持训练参数的移动平均线通常是有益的。
  • DropBlock: 只在FPN中应用DropBlock。
  • IoU Loss: 与YOLOv4不同的是,作者并没有直接用IoU损失代替l1损失,而是增加了一个分支来计算IoU损失。由于作者发现各种IoU损失的改善效果相似,所以选择了最基本的IoU损失。
  • IoU Aware: 在YOLOv3中,分类概率和objectness得分相乘作为最终检测目标的置信度得分,但是这没有考虑定位精度。为了解决这一问题,增加了IoU预测分支来衡量定位的准确性。在训练过程中,采用IoU感知损失训练IoU预测分支。在推理过程中,将预测的IoU乘以分类概率和objectness得分,计算出最终的检测置信度,该置信度与定位精度更相关。然后将最终检测置信度用作后续NMS的输入。虽然IoU感知分支会增加额外的计算成本。但是,只增加了0.01%的参数个数和0.0001%的flop,几乎可以忽略不计。
  • Grid Sensitive: 借鉴YOLOv4的改进
  • Matrix NMS: 受到了soft-NMS的启发,并行的方式实现NMS,更快。
  • CoordConv: 它的工作原理是通过使用额外的坐标通道让卷积访问自己的输入坐标。CoordConv允许网络学习完全的变换不变性或不同程度的变换依赖性。考虑到CoordConv将在卷积层中增加两个输入通道,因此将增加一些参数和FLOPs。为了尽可能减少效率的损失,作者没有改变骨干中的卷积层,只将FPN中的1x1卷积层和检测头中的第1个卷积层替换为CoordConv。
  • SPP: 和YOLOv4一样,也引入了SPP层增大感受野。
  • Better Pretrain Model: 使用蒸馏的ResNet50-vd模型作为预训练模型。

3、实验

3.1 消融实验

作者对以上改进做了消融实验,如下表所示:
在这里插入图片描述
值得注意的是:作者在YOLOv3的基础上直接替换主干为ResNet50-vd-dcn后,mAP提升,推理速度也加快了。每个trick都有涨点,其中B->C涨点最多。

3.2 与其他检测算法比较

PP-YOLO与现如今最新检测算法在COCO数据集上的mAP比较如下表所示。可以看出PP-YOLO无论是mAP指标或者是FPS指标都是非常优秀的。
在这里插入图片描述

这篇关于目标检测——PP-YOLO算法解读的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/826282

相关文章

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

MySQL之搜索引擎使用解读

《MySQL之搜索引擎使用解读》MySQL存储引擎是数据存储和管理的核心组件,不同引擎(如InnoDB、MyISAM)采用不同机制,InnoDB支持事务与行锁,适合高并发场景;MyISAM不支持事务,... 目录mysql的存储引擎是什么MySQL存储引擎的功能MySQL的存储引擎的分类查看存储引擎1.命令

Spring的基础事务注解@Transactional作用解读

《Spring的基础事务注解@Transactional作用解读》文章介绍了Spring框架中的事务管理,核心注解@Transactional用于声明事务,支持传播机制、隔离级别等配置,结合@Tran... 目录一、事务管理基础1.1 Spring事务的核心注解1.2 注解属性详解1.3 实现原理二、事务事

C#自动化实现检测并删除PDF文件中的空白页面

《C#自动化实现检测并删除PDF文件中的空白页面》PDF文档在日常工作和生活中扮演着重要的角色,本文将深入探讨如何使用C#编程语言,结合强大的PDF处理库,自动化地检测并删除PDF文件中的空白页面,感... 目录理解PDF空白页的定义与挑战引入Spire.PDF for .NET库核心实现:检测并删除空白页

Linux五种IO模型的使用解读

《Linux五种IO模型的使用解读》文章系统解析了Linux的五种IO模型(阻塞、非阻塞、IO复用、信号驱动、异步),重点区分同步与异步IO的本质差异,强调同步由用户发起,异步由内核触发,通过对比各模... 目录1.IO模型简介2.五种IO模型2.1 IO模型分析方法2.2 阻塞IO2.3 非阻塞IO2.4

MySQL8.0临时表空间的使用及解读

《MySQL8.0临时表空间的使用及解读》MySQL8.0+引入会话级(temp_N.ibt)和全局(ibtmp1)InnoDB临时表空间,用于存储临时数据及事务日志,自动创建与回收,重启释放,管理高... 目录一、核心概念:为什么需要“临时表空间”?二、InnoDB 临时表空间的两种类型1. 会话级临时表

Python脚本轻松实现检测麦克风功能

《Python脚本轻松实现检测麦克风功能》在进行音频处理或开发需要使用麦克风的应用程序时,确保麦克风功能正常是非常重要的,本文将介绍一个简单的Python脚本,能够帮助我们检测本地麦克风的功能,需要的... 目录轻松检测麦克风功能脚本介绍一、python环境准备二、代码解析三、使用方法四、知识扩展轻松检测麦

C语言自定义类型之联合和枚举解读

《C语言自定义类型之联合和枚举解读》联合体共享内存,大小由最大成员决定,遵循对齐规则;枚举类型列举可能值,提升可读性和类型安全性,两者在C语言中用于优化内存和程序效率... 目录一、联合体1.1 联合体类型的声明1.2 联合体的特点1.2.1 特点11.2.2 特点21.2.3 特点31.3 联合体的大小1

Python标准库datetime模块日期和时间数据类型解读

《Python标准库datetime模块日期和时间数据类型解读》文章介绍Python中datetime模块的date、time、datetime类,用于处理日期、时间及日期时间结合体,通过属性获取时间... 目录Datetime常用类日期date类型使用时间 time 类型使用日期和时间的结合体–日期时间(