聚类分析 | Matlab实现基于NNMF+DBO+K-Medoids的数据聚类可视化

2024-03-19 08:36

本文主要是介绍聚类分析 | Matlab实现基于NNMF+DBO+K-Medoids的数据聚类可视化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

聚类分析 | Matlab实现基于NNMF+DBO+K-Medoids的数据聚类可视化

目录

    • 聚类分析 | Matlab实现基于NNMF+DBO+K-Medoids的数据聚类可视化
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述

基本介绍

NNMF+DBO+K-Medoids聚类,蜣螂优化算法DBO优化K-Medoids
非负矩阵分解(NNMF)、蜣螂优化算法(DBO)、以及K-Medoids聚类。下面我将分别解释这些概念,然后讨论如何将它们结合起来使用。

非负矩阵分解(NNMF):
非负矩阵分解是一种线性代数技术,用于将一个非负矩阵分解为两个非负矩阵的乘积。这种方法在数据分析和机器学习中很有用,因为它可以揭示数据的潜在结构,同时保持数据的非负性。
蜣螂优化算法(DBO):
蜣螂优化算法是一种模拟自然界中蜣螂觅食行为的优化算法。它通常用于解决优化问题,如函数优化、参数调整等。通过模拟蜣螂的滚动行为和路径选择,该算法能够在复杂空间中寻找最优解。
K-Medoids聚类:
K-Medoids聚类是一种基于原型的聚类方法,它选择数据集中的实际观测值作为聚类中心(即medoids)。与K-Means聚类不同,K-Medoids使用数据集中的实际点作为聚类中心,而不是计算得到的平均值。这使得K-Medoids对噪声和异常值更加鲁棒。
结合使用:
将NNMF、DBO和K-Medoids聚类结合起来使用可能涉及以下步骤:

数据预处理:首先,你可以使用NNMF对原始数据进行预处理,以提取数据的潜在结构或特征。这有助于降低数据的维度并减少噪声。
参数优化:然后,你可以使用DBO算法来优化K-Medoids聚类的参数,如聚类数量K和medoids的选择。通过模拟蜣螂的觅食行为,DBO可以帮助你找到这些参数的最优值。
聚类分析:最后,使用优化后的参数,你可以应用K-Medoids聚类算法对数据进行聚类分析。这将根据数据的内在结构和特征将数据划分为不同的组或类别。
需要注意的是,这种组合方法的具体实现细节可能因应用场景和数据特性的不同而有所变化。你可能需要根据你的具体需求和数据特点来调整和优化这个流程。此外,还需要注意算法的计算复杂度和性能,以确保在实际应用中能够高效地处理大规模数据集。

程序设计

  • 完整源码和数据获取方式私信博主回复Matlab实现基于nnmf+DBO+K-Medoids的数据聚类可视化
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/119920826
————————————————
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/119920826

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

这篇关于聚类分析 | Matlab实现基于NNMF+DBO+K-Medoids的数据聚类可视化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/825403

相关文章

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库