R语言多元时间序列滚动预测:ARIMA、回归、ARIMAX模型分析

本文主要是介绍R语言多元时间序列滚动预测:ARIMA、回归、ARIMAX模型分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近我们被客户要求撰写关于时间序列滚动预测的研究报告,包括一些图形和统计输出。

相关视频:在Python和R语言中建立EWMA,ARIMA模型预测时间序列

当需要为数据选择最合适的预测模型或方法时,预测者通常将可用的样本分成两部分:内样本(又称 "训练集")和保留样本(或外样本,或 "测试集")。然后,在样本中估计模型,并使用一些误差指标来评估其预测性能。

如果这样的程序只做一次,那么这被称为 "固定原点 "评估。然而,时间序列可能包含离群值,一个差的模型可能比更合适的模型表现得更好。为了加强对模型的评估,我们使用了一种叫做 "滚动原点 "的方法。

滚动原点是一种预测方法,根据这种方法,预测原点被连续更新,预测是由每个原点产生的(Tashman 2000)。这种方法允许获得几个时间序列的预测误差,从而更好地了解模型的表现。

如何实现呢?

下图描述了滚动原点的基本思想。白色单元格对应的是样本内数据,而浅灰色单元格对应的是前三步的预测。该图中时间序列有25个观测值,预测从8个原点开始产生,从原点15开始。模型在每次迭代中都被重新估计,并产生预测结果。之后,在系列的末尾增加一个新的观测值,这个过程继续进行。当没有更多的数据需要添加时,这个过程就会停止。这可以被认为是一个滚动的原点,有一个固定的保留样本量。这个程序的结果是产生了8个一到三步的预测。在此基础上,我们可以计算出误差测量方法,并选择表现最好的模型。

从8个原点产生预测的另一个选择是,从原点17而不是15开始(见下图)。在这种情况下,程序一直持续到原点22,即产生最后一个三步超前预测的时候,然后继续以递减的预测范围进行。因此,两步预测从原点23产生,只有一步预测从原点24产生。因此,我们得到8个一步预测,7个两步预测和6个三步预测。这可以被认为是一个滚动的原点,有一个非固定的保留样本量。可用于在小样本的情况下,当我们没有多余的观测值的时候。

最后,在上述两种情况下,我们的样本量都在增加。然而对于某些研究目的,我们可能需要一个恒定的内样本。下图展示了这样一种情况。在这种情况下,在每次迭代中,我们在系列的末尾增加一个观察值,并从系列的开始删除一个观察值(深灰色单元)。

R实现:一元时间序列ARIMA案例

R实现了对任何函数的滚动原点估计,有一个预定义的调用,并返回预期的值。

我们从一个简单的例子开始,从正态分布生成序列。

x <- rnorm(100,100,10)

我们在这个例子中使用ARIMA(0,1,1)。

predict(arima(x=data,order=c(0,1,1)),n.ahead=h

调用包括两个重要元素:data和h。data指定了样本内值在我们要使用的函数中的位置。h将告诉我们的函数,在选定的函数中指定了预测的范围。在这个例子中,我们使用arima(x=data,order=c(0,1,1)),产生了一个想要的ARIMA(0,1,1)模型,然后我们使用predict(...,n. ahead=h),从该模型产生一个预测。

还需要指定函数应该返回什么。可以是条件平均数(点预测),预测区间,模型的参数。然而,根据你使用的函数返回的内容,滚动预测返回的内容有一些不同。如果它是一个矢量,那么滚动预测将产生一个矩阵(列中有每个原点的值)。如果它是一个矩阵,那么就会返回一个数组。最后,如果它是一个列表,那么将返回一个列表的列表。

我们先从predict()函数中收集条件平均值。

我们可以使用滚动原点从模型中产生预测结果。比方说,我们想要三步预测和8个原点,所有其他参数的默认值。

predro(x, h , orig )

该函数返回一个列表,其中包含我们要求的所有数值,再加上保留样本的实际数值。我们可以根据这些值计算一些基本的误差指标,例如,按比例的平均绝对误差。

apply(abs(holdo - pred),1,mean) / mean(actual)

 

在这个例子中,我们使用apply()函数,区分不同的预测期,并了解模型在每个预测期的表现。以类似的方式,我们可以评估其他一些模型的性能,并与第一个模型产生的误差进行比较。这些数字本身并不能说明什么,但如果我们把这个模型的表现与另一个模型进行比较,那么我们就可以推断出一个模型是否比另一个模型更适合数据。

我们还可以绘制来自滚动原点的预测结果。

plot(Values1)

在这个例子中,来自不同来源的预测结果是相互接近的。这是因为数据是平稳的,模型是相当稳定的。

如果我们看一下返回的矩阵,我们会注意到它们包含缺失值。

这是因为在默认情况下,保留样本被设置为非常数。内样本也被设置为非常数,这就是为什么模型在每次迭代时都会对增加的样本进行重新估计。我们可用修改这一点。

predro(x, h , ori )

请注意,return2的值与return1的值不能直接比较,因为它们是由不同的起点生成的。这一点在我们绘图时可以看出来。

plot(returned2)

如果你使用预测包中的函数,可以用以下方式修改调用和返回值。

 "forecast(ets(data) ,level=95"c("mean","lower","upper")

多元时间序列ARIMA案例

当你有一个模型和一个时间序列时,滚动预测的是一个方便的方法。但是如果你需要将不同的模型应用于不同的时间序列呢?我们会需要一个循环。在这种情况下,有一个简单的方法来使用滚动预测。现在引入几个时间序列。

对于这个例子,我们需要一个返回值的数组。

array(NA,c(3,2,3,8))

在这里,我们将有3个时间序列,2个模型和来自8个来源的3步超前预测。我们的模型将被保存在一个单独的列表中。在这个例子中,我们将有ARIMA(0,1,1)和ARIMA(1,1,0)。

 list(c(0,1,1), c(1,1,0))

我们从函数中返回相同的预测值,但我们需要改变调用方式,因为现在我们必须将这两种不同的模型考虑在内。

"predict(arima(data,Models[[i]])ahead=h)"

我们没有直接指定模型,而是使用列表中的第i个元素。

我们还想从保留样本中保存实际值,以便能够计算误差。

这个数组有3个时间序列和来自8个原点的3步超前预测的维度。

最后,我们可以写一个循环并产生预测结果。

for(j in 1:3)  for(i in 1:2)predro(data, h , or=8)

比较两者在不同时间序列上的表现。

exp(mean(log(apply(Holdout - Fore  / apply(abs(Holdout - Fore ))

 

因此,根据这些结果,可以得出结论,在我们的三个时间序列上,ARIMA(0,1,1)平均来说比ARIMA(1,1,0)更准确。

线性回归和ARIMAX案例

我们的最后一个例子,我们创建数据框并拟合线性回归。

请注意,在这个例子中,lm()函数中实现的回归依赖于数据框架,不使用预测范围。

predict(lm(y~x1+x2+x3,xre),newdat

此外,函数predict.lm()返回的是一个带有数值的矩阵,而不是一个列表。 最后调用滚动预测。

pred(y, h , ori  )

在这种情况下, 我们需要在调用的数据参数中提供因变量, 因为该函数需要提取holdout的值.

predict(lm( xreg ,new =xreg "
predro( $y, h , or  )
plot( Return)

作为最后一个例子,我们考虑以下数据的ARIMAX模型。

并相应地修改调用。

ourCall <- "predict(arima(x=data, order=c(0,1,1), xreg=xreg[counti,]), n.ahead=h, newxreg=xreg[counto,])"

考虑到现在我们处理的是ARIMA,我们需要同时指定数据和h。此外,xreg与之前的例子不同,因为它现在不应该包含因变量。

如果你使用ETSX模型,调用可以简化为:

 "es(x=dat, xreg, h=h"

最后,上面提到的所有例子都可以并行完成,特别是当数据非常多且样本量很大时。

参考文献

Davydenko, Andrey, and Robert Fildes. 2013. “Measuring Forecasting Accuracy: The Case of Judgmental Adjustments to Sku-Level Demand Forecasts.” International Journal of Forecasting 29 (3). Elsevier B.V.: 510–22. Redirecting.

Petropoulos, Fotios, and Nikolaos Kourentzes. 2015. “Forecast combinations for intermittent demand.” Journal of the Operational Research Society 66 (6). Nature Publishing Group: 914–24. https://doi.org/10.1057/jors.2014.62.


这篇关于R语言多元时间序列滚动预测:ARIMA、回归、ARIMAX模型分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/824146

相关文章

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

通过React实现页面的无限滚动效果

《通过React实现页面的无限滚动效果》今天我们来聊聊无限滚动这个现代Web开发中不可或缺的技术,无论你是刷微博、逛知乎还是看脚本,无限滚动都已经渗透到我们日常的浏览体验中,那么,如何优雅地实现它呢?... 目录1. 早期的解决方案2. 交叉观察者:IntersectionObserver2.1 Inter

Go语言中json操作的实现

《Go语言中json操作的实现》本文主要介绍了Go语言中的json操作的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录 一、jsOChina编程N 与 Go 类型对应关系️ 二、基本操作:编码与解码 三、结构体标签(Struc

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

java时区时间转为UTC的代码示例和详细解释

《java时区时间转为UTC的代码示例和详细解释》作为一名经验丰富的开发者,我经常被问到如何将Java中的时间转换为UTC时间,:本文主要介绍java时区时间转为UTC的代码示例和详细解释,文中通... 目录前言步骤一:导入必要的Java包步骤二:获取指定时区的时间步骤三:将指定时区的时间转换为UTC时间步