基于PaddlePaddle实现多分类的Focal Loss

2024-03-18 16:38

本文主要是介绍基于PaddlePaddle实现多分类的Focal Loss,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

论文:Focal Loss for Dense Object Detection
论文链接:https://arxiv.org/abs/1708.02002

在网上找了一下,有一位博主尝试写了一个,但是没有实现类别平衡。于是我继续了这位博主的工作,添加了类别平衡。在我的数据集上表现的很好。

  这几天做一个图像分类的项目,每个标签的训练集数量差别很大,分类难易程度差别也很大,于是想用Focal Loss试一下,但是PaddlePaddle的函数库没有实现这个损失函数。
  Focal Loss的理解可以看这一篇文章。

首先看一下使用Focal Loss之前的模型训练效果,分类很不平衡。
未使用Focal Loss的分类结果
PaddlePaddle实现Focal Loss可以使用现有的op组合,也可以自己写一个op,后者难度较大,今天先使用现有的op,以后有时间再写op吧。

def focal_loss(pred, label, gama, alpha):one_hot = paddle.fluid.layers.one_hot(label, train_parameters['class_dim'])cross_entropy = one_hot * fluid.layers.log(pred)cross_entropy = fluid.layers.reduce_sum(cross_entropy, dim=-1)weight = -1.0 * one_hot * paddle.fluid.layers.pow((1.0 - pred), gama)weight = fluid.layers.reduce_sum(weight, dim=-1)ax = alpha * one_hotalph = fluid.layers.reduce_sum(ax, dim=-1)return alph * weight * cross_entropy

gama参数一般取2;
alpha参数的实现:
定义占位符

img = fluid.data(name='img', shape=[-1] + train_parameters['input_size'], dtype='float32')
label = fluid.data(name='label', shape=[-1, 1], dtype='int64')
falpha = fluid.data(name='falpha', shape=[-1,train_parameters['class_dim']], dtype='float32')
feeder = fluid.DataFeeder(feed_list=[img, label, falpha], place=place)

构建falpha参数

def get_focal_alpha():alpha = []value_count = train_parameters["label_img_count"]     # 每个标签的训练集图片数量image_count = train_parameters["image_count"]    # 训练集图片总数量for i in range(value_count.shape[0]):alpha.append(((image_count-value_count[i])/image_count*1000-997)/3)return alpha
focal_alpha = np.array(get_focal_alpha(),dtype=np.float32)

在训练模型的每一个batch,将原来的feed数据添加falpha之后feed进去

# 这里的data是batch_reader()得到的数据
new_data = []
for i in range(len(data)):new_item = data[0] + (focal_alpha,)new_data.append(new_item)del data[0]loss, acc1, pred = exe.run(main_program,feed=feeder.feed(new_data),fetch_list=train_fetch_list)

使用Focal Loss之后的分类结果
使用Focal Loss之后的分类结果

参考文章:
理解Focal Loss
实现不带类别平衡的Focal Loss

这篇关于基于PaddlePaddle实现多分类的Focal Loss的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/822960

相关文章

Linux下删除乱码文件和目录的实现方式

《Linux下删除乱码文件和目录的实现方式》:本文主要介绍Linux下删除乱码文件和目录的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下删除乱码文件和目录方法1方法2总结Linux下删除乱码文件和目录方法1使用ls -i命令找到文件或目录

SpringBoot+EasyExcel实现自定义复杂样式导入导出

《SpringBoot+EasyExcel实现自定义复杂样式导入导出》这篇文章主要为大家详细介绍了SpringBoot如何结果EasyExcel实现自定义复杂样式导入导出功能,文中的示例代码讲解详细,... 目录安装处理自定义导出复杂场景1、列不固定,动态列2、动态下拉3、自定义锁定行/列,添加密码4、合并

mybatis执行insert返回id实现详解

《mybatis执行insert返回id实现详解》MyBatis插入操作默认返回受影响行数,需通过useGeneratedKeys+keyProperty或selectKey获取主键ID,确保主键为自... 目录 两种方式获取自增 ID:1. ​​useGeneratedKeys+keyProperty(推

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控

Linux在线解压jar包的实现方式

《Linux在线解压jar包的实现方式》:本文主要介绍Linux在线解压jar包的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux在线解压jar包解压 jar包的步骤总结Linux在线解压jar包在 Centos 中解压 jar 包可以使用 u

c++ 类成员变量默认初始值的实现

《c++类成员变量默认初始值的实现》本文主要介绍了c++类成员变量默认初始值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录C++类成员变量初始化c++类的变量的初始化在C++中,如果使用类成员变量时未给定其初始值,那么它将被

Qt使用QSqlDatabase连接MySQL实现增删改查功能

《Qt使用QSqlDatabase连接MySQL实现增删改查功能》这篇文章主要为大家详细介绍了Qt如何使用QSqlDatabase连接MySQL实现增删改查功能,文中的示例代码讲解详细,感兴趣的小伙伴... 目录一、创建数据表二、连接mysql数据库三、封装成一个完整的轻量级 ORM 风格类3.1 表结构

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核