GEE数据集——全球( 30 弧秒)尺度地下水模型GLOBGM v1.0数据集

2024-03-17 15:36

本文主要是介绍GEE数据集——全球( 30 弧秒)尺度地下水模型GLOBGM v1.0数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

全球尺度地下水模型GLOBGM v1.0

GLOBGM v1.0 数据集是全球地下水建模的一个重要里程碑,提供了 30 弧秒 PCR-GLOBWB-MODFLOW 模型的并行实施。该数据集由 Jarno Verkaik 等人开发,以赤道约 1 公里的空间分辨率全面展示了全球地下水动态。该数据集利用两个模型层和 MODFLOW 6 框架,利用现有的 30′′ PCR-GLOBWB 数据进行模拟,使研究人员能够探索全球范围的地下水流动态。计算实现采用消息传递接口并行化,便于在分布式内存并行集群上进行高效处理。

GLOBGM v1.0 数据集覆盖全球(不包括格陵兰岛和南极洲),有助于深入了解地下水行为的各个方面。尽管该数据集未经校准,但它利用美国地质调查局(USGS)国家水信息系统(NWIS)对美国毗连地区(CONUS)的水头观测数据进行了有限的评估。您可以点击此处阅读论文,以便更好地了解该方法。

讨论了在大型分布式内存并行集群上并行化 30′′ 分辨率(30 弧秒;赤道上 ∼ 1 公里)瞬态全球尺度地下水模型的各方面性能。该模型被称为 GLOBGM,是 PCR-GLOBWB 2(PCRaster Global Water Balance Model,PCRaster 全球水平衡模型)5′(5 弧分;赤道 ∼ 10 公里)地下水模型的后继模型,基于具有两个模型层的 MODFLOW。本研究使用的当前版本 GLOBGM(v1.0)也有两个模型层,未经校准,使用的是现有的 30′′ PCR-GLOBWB 数据。将模型分辨率从 5′ 提高到 30′ 会带来一些挑战,包括运行时间、内存使用量和数据存储量的增加,这些都超出了单台计算机的承受能力。我们的研究表明,我们的并行化方法能以相对较低的并行硬件要求解决这些问题,从而满足那些无法独享超级计算机中成百上千个节点的用户或建模人员的需求。

在模拟中,我们使用了非结构化网格和 MODFLOW 6 的原型版本,并利用消息传递接口对其进行了并行化处理。我们构建了总计 2.78 亿个活动单元的独立非结构化网格,以消除所有多余的海洋和陆地单元,同时满足所有必要的边界条件,并将其分布在三个大陆尺度的地下水模型上(1.68 亿个--非洲-欧亚大陆;0.77 亿个--美洲;0.16 亿个--澳大利亚),剩下的一个模型用于较小的岛屿(0.17 亿个)。四个地下水模型中的每个模型都被划分为多个不重叠的子模型,这些子模型在 MODFLOW 线性求解器中紧密耦合,每个子模型被唯一分配给一个处理器内核,相关子模型数据在预处理过程中使用数据块并行写入。为了提前平衡并行工作量,我们以两种方式应用了广泛使用的 METIS 图分割器:直接应用于所有(横向)模型网格单元,并以基于区域的方式应用于 HydroBASINS 集水区,这些集水区被分配给子模型,以便对未来与地表水的耦合进行预排序。我们考虑在荷兰国家超级计算机 Snellius 上进行一次试验,以每日时间步长和每月输入的方式模拟 1958-2015 年,包括 20 年的自旋。鉴于串行模拟需要 4.5 个月的运行时间,我们设定了最多 16 小时模拟运行时间的假设目标。我们的结果表明,12 个节点(每个节点 32 个内核;共 384 个内核)足以实现这一目标,在并行使用 7 个节点(224 个内核)时,最大的非洲-欧亚大陆模型的速度提高了 138 倍。

利用美国地质调查局 (USGS) 国家水信息系统 (NWIS) 对美国毗连地区的水头观测数据,对模型输出结果进行了有限的评估。结果表明,与 5 ′ PCR-GLOBWB 地下水模型相比,将分辨率从 5 ′提高到 30 ′,GLOBGM 在稳态模拟中的效果明显改善。然而,瞬态模拟的结果非常相似,还有很大的改进余地。不过,GLOBGM 和 PCR-GLOBWB 模型得出的月度和多年陆地总蓄水量异常值与 GRACE 卫星的观测结果相比还是比较理想的。要进一步改进下一版全球陆地水文地理信息模型,需要更详细的(水文)地质示意图和有关取水井位置、深度和抽水量的更多信息。

数据结构

本表提供了 GLOBGM 数据集模型栅格输出的结构概述,包括文件路径和每个文件的说明。

File PathDescription
/steady-state/globgm-heads-lower-layer-ss.tifComputed steady-state groundwater head [m] for the lower model layer
/steady-state/globgm-heads-lower-layer-ss.tifComputed steady-state groundwater head [m] for the upper model layer
/steady-state/globgm-wtd-ss.tifComputed water table depth [m] (sampled from upper to lower layer)
/transient_1958-2015/globgm-wtd-.tifComputed water table depth [m] (sampled from upper to lower layer)
/transient_1958-2015/globgm-wtd-bot-*.tifComputed water table depth [m] (lower layer only)

文章引用

Verkaik, Jarno, Edwin H. Sutanudjaja, Gualbert HP Oude Essink, Hai Xiang Lin, and Marc FP Bierkens. "GLOBGM v1. 0: a parallel implementation of a 30
arcsec PCR-GLOBWB-MODFLOW global-scale groundwater model." Geoscientific Model Development 17, no. 1 (2024): 275-300.

数据引用

Verkaik, J., Hughes J.D., Langevin, C.D., (2021). Parallel MODFLOW 6.2.1 prototype release 0.1 (6.2.1_0.1). Zenodo.

数据代码

var wtd = ee.ImageCollection("projects/sat-io/open-datasets/GLOBGM/TRANSIENT/WTD");
var wtd_bt = ee.ImageCollection("projects/sat-io/open-datasets/GLOBGM/TRANSIENT/WTD-BOTTOM");
var globgm_wtd_ss = ee.Image("projects/sat-io/open-datasets/GLOBGM/STEADY-STATE/globgm-wtd-ss");
var globgm_heads_lower_layer_ss = ee.Image("projects/sat-io/open-datasets/GLOBGM/STEADY-STATE/globgm-heads-lower-layer-ss");
var globgm_heads_upper_layer_ss = ee.Image("projects/sat-io/open-datasets/GLOBGM/STEADY-STATE/globgm-heads-upper-layer-ss");

Sample code: https://code.earthengine.google.com/?scriptPath=users/sat-io/awesome-gee-catalog-examples:hydrology/GLOBGM-GROUNDWATER-MODEL

License¶

GLOBGM v1.0 is open source and distributed under the terms of GNU General Public License v3.0, or any later version, as published by the Free Software Foundation.

Created by: Verkaik et al. 2024

Curated in GEE by : Samapriya Roy

Keywords: GLOBGM,groundwater,global-scale modeling,PCR-GLOBWB,MODFLOW,high performance computing

Last updated in GEE: 2024-02-04

 网址推荐

0代码在线构建地图应用 

https://sso.mapmost.com/#/login?source_inviter=nClSZANO

机器学习
https://www.cbedai.net/xg

这篇关于GEE数据集——全球( 30 弧秒)尺度地下水模型GLOBGM v1.0数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/819370

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I

Java整合Protocol Buffers实现高效数据序列化实践

《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro