GEE数据集——全球( 30 弧秒)尺度地下水模型GLOBGM v1.0数据集

2024-03-17 15:36

本文主要是介绍GEE数据集——全球( 30 弧秒)尺度地下水模型GLOBGM v1.0数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

全球尺度地下水模型GLOBGM v1.0

GLOBGM v1.0 数据集是全球地下水建模的一个重要里程碑,提供了 30 弧秒 PCR-GLOBWB-MODFLOW 模型的并行实施。该数据集由 Jarno Verkaik 等人开发,以赤道约 1 公里的空间分辨率全面展示了全球地下水动态。该数据集利用两个模型层和 MODFLOW 6 框架,利用现有的 30′′ PCR-GLOBWB 数据进行模拟,使研究人员能够探索全球范围的地下水流动态。计算实现采用消息传递接口并行化,便于在分布式内存并行集群上进行高效处理。

GLOBGM v1.0 数据集覆盖全球(不包括格陵兰岛和南极洲),有助于深入了解地下水行为的各个方面。尽管该数据集未经校准,但它利用美国地质调查局(USGS)国家水信息系统(NWIS)对美国毗连地区(CONUS)的水头观测数据进行了有限的评估。您可以点击此处阅读论文,以便更好地了解该方法。

讨论了在大型分布式内存并行集群上并行化 30′′ 分辨率(30 弧秒;赤道上 ∼ 1 公里)瞬态全球尺度地下水模型的各方面性能。该模型被称为 GLOBGM,是 PCR-GLOBWB 2(PCRaster Global Water Balance Model,PCRaster 全球水平衡模型)5′(5 弧分;赤道 ∼ 10 公里)地下水模型的后继模型,基于具有两个模型层的 MODFLOW。本研究使用的当前版本 GLOBGM(v1.0)也有两个模型层,未经校准,使用的是现有的 30′′ PCR-GLOBWB 数据。将模型分辨率从 5′ 提高到 30′ 会带来一些挑战,包括运行时间、内存使用量和数据存储量的增加,这些都超出了单台计算机的承受能力。我们的研究表明,我们的并行化方法能以相对较低的并行硬件要求解决这些问题,从而满足那些无法独享超级计算机中成百上千个节点的用户或建模人员的需求。

在模拟中,我们使用了非结构化网格和 MODFLOW 6 的原型版本,并利用消息传递接口对其进行了并行化处理。我们构建了总计 2.78 亿个活动单元的独立非结构化网格,以消除所有多余的海洋和陆地单元,同时满足所有必要的边界条件,并将其分布在三个大陆尺度的地下水模型上(1.68 亿个--非洲-欧亚大陆;0.77 亿个--美洲;0.16 亿个--澳大利亚),剩下的一个模型用于较小的岛屿(0.17 亿个)。四个地下水模型中的每个模型都被划分为多个不重叠的子模型,这些子模型在 MODFLOW 线性求解器中紧密耦合,每个子模型被唯一分配给一个处理器内核,相关子模型数据在预处理过程中使用数据块并行写入。为了提前平衡并行工作量,我们以两种方式应用了广泛使用的 METIS 图分割器:直接应用于所有(横向)模型网格单元,并以基于区域的方式应用于 HydroBASINS 集水区,这些集水区被分配给子模型,以便对未来与地表水的耦合进行预排序。我们考虑在荷兰国家超级计算机 Snellius 上进行一次试验,以每日时间步长和每月输入的方式模拟 1958-2015 年,包括 20 年的自旋。鉴于串行模拟需要 4.5 个月的运行时间,我们设定了最多 16 小时模拟运行时间的假设目标。我们的结果表明,12 个节点(每个节点 32 个内核;共 384 个内核)足以实现这一目标,在并行使用 7 个节点(224 个内核)时,最大的非洲-欧亚大陆模型的速度提高了 138 倍。

利用美国地质调查局 (USGS) 国家水信息系统 (NWIS) 对美国毗连地区的水头观测数据,对模型输出结果进行了有限的评估。结果表明,与 5 ′ PCR-GLOBWB 地下水模型相比,将分辨率从 5 ′提高到 30 ′,GLOBGM 在稳态模拟中的效果明显改善。然而,瞬态模拟的结果非常相似,还有很大的改进余地。不过,GLOBGM 和 PCR-GLOBWB 模型得出的月度和多年陆地总蓄水量异常值与 GRACE 卫星的观测结果相比还是比较理想的。要进一步改进下一版全球陆地水文地理信息模型,需要更详细的(水文)地质示意图和有关取水井位置、深度和抽水量的更多信息。

数据结构

本表提供了 GLOBGM 数据集模型栅格输出的结构概述,包括文件路径和每个文件的说明。

File PathDescription
/steady-state/globgm-heads-lower-layer-ss.tifComputed steady-state groundwater head [m] for the lower model layer
/steady-state/globgm-heads-lower-layer-ss.tifComputed steady-state groundwater head [m] for the upper model layer
/steady-state/globgm-wtd-ss.tifComputed water table depth [m] (sampled from upper to lower layer)
/transient_1958-2015/globgm-wtd-.tifComputed water table depth [m] (sampled from upper to lower layer)
/transient_1958-2015/globgm-wtd-bot-*.tifComputed water table depth [m] (lower layer only)

文章引用

Verkaik, Jarno, Edwin H. Sutanudjaja, Gualbert HP Oude Essink, Hai Xiang Lin, and Marc FP Bierkens. "GLOBGM v1. 0: a parallel implementation of a 30
arcsec PCR-GLOBWB-MODFLOW global-scale groundwater model." Geoscientific Model Development 17, no. 1 (2024): 275-300.

数据引用

Verkaik, J., Hughes J.D., Langevin, C.D., (2021). Parallel MODFLOW 6.2.1 prototype release 0.1 (6.2.1_0.1). Zenodo.

数据代码

var wtd = ee.ImageCollection("projects/sat-io/open-datasets/GLOBGM/TRANSIENT/WTD");
var wtd_bt = ee.ImageCollection("projects/sat-io/open-datasets/GLOBGM/TRANSIENT/WTD-BOTTOM");
var globgm_wtd_ss = ee.Image("projects/sat-io/open-datasets/GLOBGM/STEADY-STATE/globgm-wtd-ss");
var globgm_heads_lower_layer_ss = ee.Image("projects/sat-io/open-datasets/GLOBGM/STEADY-STATE/globgm-heads-lower-layer-ss");
var globgm_heads_upper_layer_ss = ee.Image("projects/sat-io/open-datasets/GLOBGM/STEADY-STATE/globgm-heads-upper-layer-ss");

Sample code: https://code.earthengine.google.com/?scriptPath=users/sat-io/awesome-gee-catalog-examples:hydrology/GLOBGM-GROUNDWATER-MODEL

License¶

GLOBGM v1.0 is open source and distributed under the terms of GNU General Public License v3.0, or any later version, as published by the Free Software Foundation.

Created by: Verkaik et al. 2024

Curated in GEE by : Samapriya Roy

Keywords: GLOBGM,groundwater,global-scale modeling,PCR-GLOBWB,MODFLOW,high performance computing

Last updated in GEE: 2024-02-04

 网址推荐

0代码在线构建地图应用 

https://sso.mapmost.com/#/login?source_inviter=nClSZANO

机器学习
https://www.cbedai.net/xg

这篇关于GEE数据集——全球( 30 弧秒)尺度地下水模型GLOBGM v1.0数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/819370

相关文章

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Python数据分析与可视化的全面指南(从数据清洗到图表呈现)

《Python数据分析与可视化的全面指南(从数据清洗到图表呈现)》Python是数据分析与可视化领域中最受欢迎的编程语言之一,凭借其丰富的库和工具,Python能够帮助我们快速处理、分析数据并生成高质... 目录一、数据采集与初步探索二、数据清洗的七种武器1. 缺失值处理策略2. 异常值检测与修正3. 数据

pandas实现数据concat拼接的示例代码

《pandas实现数据concat拼接的示例代码》pandas.concat用于合并DataFrame或Series,本文主要介绍了pandas实现数据concat拼接的示例代码,具有一定的参考价值,... 目录语法示例:使用pandas.concat合并数据默认的concat:参数axis=0,join=

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L

使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)

《使用Python和Matplotlib实现可视化字体轮廓(从路径数据到矢量图形)》字体设计和矢量图形处理是编程中一个有趣且实用的领域,通过Python的matplotlib库,我们可以轻松将字体轮廓... 目录背景知识字体轮廓的表示实现步骤1. 安装依赖库2. 准备数据3. 解析路径指令4. 绘制图形关键

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

解决mysql插入数据锁等待超时报错:Lock wait timeout exceeded;try restarting transaction

《解决mysql插入数据锁等待超时报错:Lockwaittimeoutexceeded;tryrestartingtransaction》:本文主要介绍解决mysql插入数据锁等待超时报... 目录报错信息解决办法1、数据库中执行如下sql2、再到 INNODB_TRX 事务表中查看总结报错信息Lock