关联分析 Apriori算法

2024-03-17 14:08
文章标签 算法 分析 关联 apriori

本文主要是介绍关联分析 Apriori算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在日常生活中,我们每个人都会去超市、商场、电商平台购物,每次的购物记录都会进入商家的用户数据库中。商家希望从这些海量的消费记录中,发现一些有价值的规律,来提高自己的盈利水平。

purchasing truck.png

当我们在Amazon上购买图书时,会经常看到下面两个提示:1.这些书会被消费者一起购买,并且价格上有一定的折扣;2.购买了这本书的人,也会购买其他书。Amazon对平台中海量的用户记录进行挖掘,发现了这些规律,然后将这些规律应用于实际销售工作当中。有数据显示,基于这种向用户进行主动推荐的营销方式,使得亚马逊的营业额增加了35%。我们的淘宝,京东也是一样的,比如我买了一件外套,店家就会向我推荐比较搭配的裤子和鞋子,并且告诉你同时购买会有一定的折扣优惠。
frequent bought.png
others bought recommendation.png

那么商家是如何发现这些商品会被一起购买的呢?

在生活中,当我们去超市买东西的时候,牛奶和面包会一起购买,啤酒和花生或者啤酒和炸鸡会一起购买,泡面和火腿肠或者泡面和辣条会被一起购买等等。这些现象在我们看来是显而易见的,不需要去探索的。拿电商京东来举个例子,其平台上的商品有几十万种甚至上百万种,用户数量有几千万甚至上亿人,这将会形成一个行为消费者,列为商品的大规模数据集,会被一起购买的商品也不止于两件。对于这样一个庞大的数据集,如果我们人工去挖掘其中的相关规律,那工作量将是非常的大。所以这项艰巨的任务,就得交给不怕辛苦的计算机来处理。

计算机是如何去发现商品之间的相关关系呢?

第一步,寻找频繁项集(Frequent Itemsets):发现那些购买频率高的商品。
第二步,探索关联规则(Association Rules):购买的商品之间必须存在强相关关系,比如牛奶和面包。

寻找频繁项集

假设下图是一家商店某一时刻的交易记录,transaction可以当做是不同的顾客,items是不同顾客的购物记录。接下来,我们需了解几个重要的概念:
项(item):在这份交易数据集中,单个的商品就被称为项,比如{Bread},{Butter},{Peanut}等。
项集(itemset):商品的组合就被称为项集,比如{Bread,Butter},{Chips,Jelly},{Bread,Milk}等。
交易记录(transaction):也就是我们的购物小票,比如1,2,3的每条交易记录。
数据集(dataset):所有的交易记录构成我们的数据集。下图所示是一份很小的数据集,用户数量和商品种类都非常的少。
支持度(support):购买特定商品的交易数占数据集中所有交易数量的比例,比如support({Bread}) = 6/8,support({Bread,Butter}) = 3/8。
transaction records.png
那么如何判断一件商品或商品组合是否会被频繁购买,我们需预先设定一个支持度标准,比如σ = 0.6,如果我们计算的某件商品支持度大于σ,则认为该件商品会被频繁购买。比如support({Jelly}) = 3/8 < 0.6,则果冻就不是一个会被频繁购买的商品。

寻找频繁项集的步骤

第一步:寻找单件商品频繁项集,分别计算每件商品的支持度,大于σ的就是频繁项。
第二步:对单件商品进行两两组合,再次遍历数据集,计算每一个组合的支持度,大于σ的就是频繁项集。
第三部:对上述项集进行组合,组合为含有3个元素的项集,再次遍历数据集,计算每一个组合的支持度,大于σ的就是频繁项集。
以此类推,找出含有4,5…n个元素的频繁项集。

上述的方法适合在数据量较小的时候,寻找频繁项集。如果我们的数据集很大,按照这样的方法去查找频繁项集就非常的耗时,因为每确定一个频繁项集,就需要对整个数据集遍历一遍。所以在此,我们使用Apriori算法,Apriori算法可以大大降低计算复杂度,提升计算效率。

Apriori算法没有数学推理,其核心思想有两点:
1.频繁项集的所有子集都是频繁项集。
2.非频繁项集的超集一定是非频繁项集。
举个例子来理解这两点核心思想,假设{1,2,3}是频繁项集,那么{1},{2},{3},{1,2},{1,3},{2,3}都是频繁项集。如果{1}是非频繁项集,那么{1,2},{1,3}都是非频繁项集。

Apriori算法是构造频繁项集的一种方法。Apriori算法的两个参数分别是最小支持度和数据集。该算法首先会产生所有单个物品的项集列表。接着扫描交易记录来查看哪些项集满足最小支持度要求,那些不满足最小支持度的集合会被去掉。然后对剩下的集合进行组合以生成包含两个元素的项集。接下来,再重新扫描交易记录,去掉不满足最小支持度的项集。该过程重复进行,直到所有项集都被去掉。

关联规则

找到频繁项集以后,接下来就需要验证频繁项集是否符合关联规则?当我们要向顾客推荐一件商品的时候,它必须符合两个条件,高频度(顾客购买的频率高)与强相关(商品之间的关联性很强)。
在上述交易数据集中,我们想向购买牛奶的顾客推荐黄油,则我们需要计算两个量:
support({Bread} - {Butter}) = 3/8
confidence({Bread} - {Butter}) = support({Bread} - {Butter})/support({Bread}) = 3/8 / 6/8 = 0.5
支持度support表示的是商品被购买的频率,confidence也叫置信度,表示的是两件商品之间相关性的强弱。
对于任意一次的推荐,两个指标(support,confidence)都必须满足设定的标准,才可以向顾客推荐。

数据挖掘的目标
从大量有噪声的数据中,挖掘出有趣的、有价值的、隐藏的规律。所以我们在做关联分析时,所分析出的规律最好是以前不被人所熟知、所注意的。如果我们分析了半天,分析出来了购买电脑的人,很有可能会购买机械键盘。当然这条规律不能算错,但是意义不大。

参考资料
1.机器学习实战,Petre Harrington。
2.数据挖掘-理论与算法,清华大学深圳研究生院博导,袁博。
3.数据分析与机器学习实战,同济大学计算机科学博士,唐宇迪。

这篇关于关联分析 Apriori算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/819182

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方

SpringBoot中六种批量更新Mysql的方式效率对比分析

《SpringBoot中六种批量更新Mysql的方式效率对比分析》文章比较了MySQL大数据量批量更新的多种方法,指出REPLACEINTO和ONDUPLICATEKEY效率最高但存在数据风险,MyB... 目录效率比较测试结构数据库初始化测试数据批量修改方案第一种 for第二种 case when第三种

解决1093 - You can‘t specify target table报错问题及原因分析

《解决1093-Youcan‘tspecifytargettable报错问题及原因分析》MySQL1093错误因UPDATE/DELETE语句的FROM子句直接引用目标表或嵌套子查询导致,... 目录报js错原因分析具体原因解决办法方法一:使用临时表方法二:使用JOIN方法三:使用EXISTS示例总结报错原

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串