第二十四天-数据可视化Matplotlib

2024-03-17 12:36

本文主要是介绍第二十四天-数据可视化Matplotlib,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1.介绍

2.使用

1. 安装:

2.创建简单图表

 3.图表类型

1.一共分为7类

2.变化

1.折线图

3.分布

​编辑

1.直方图

2.箱型图

4.关联

1. 散点图:

2.热力图:

5.组成

1.饼图

2.条形图

6.分组

1.簇型散点图

2.分组条形图

3.分组条形图不覆盖

7.偏差

1.发散条形图

2.面积图

8.排序


1.介绍

1. 数据可视化相关库

2.Matplotlib

1. 官网:http://matplotlib.org 

2.中文网:http://matplotlib.org.cn

2.使用

1. 安装:

pip install matplotlib

import matplotlib.pyplot as plt

2.创建简单图表

# 创建画板, 2行1列的图表 sharex:共享x轴,sharey:共享y轴
fig, axs = plt.subplots(2, 1)# 生成数据
data = np.random.randn(100)# 选取第一个画布,填充数据
axs[0].hist(data, bins=50, color="red")
axs[1].plot(data, color="red")#参数设置
#设置标题
axs[0].set_title("chart1")
axs[1].set_title("chart2")
#设置x轴y轴名称
axs[0].set_xlabel("value")
axs[0].set_ylabel("freq")
axs[1].set_xlabel("index")
axs[1].set_ylabel("value")#设置间距,避免名称重叠
fig.tight_layout()plt.show()

 3.图表类型

1.一共分为7类

2.变化

1.折线图

   

# coding:utf-8import matplotlib.pyplot as plt
import matplotlib as mpl
import numpy as np
import pandas as pd# 设置显示中文mpl.rcParams["font.family"] = "FangSong"  # 设置字体
mpl.rcParams["axes.unicode_minus"] = False  # 正常显示负号fig, ax = plt.subplots(1, 1)# 模拟数据
datas = pd.date_range("2018-01-01", "2021-01-01", freq="M")def get_price(size):return np.cumsum(np.random.randn(size))price = [get_price(datas.size), get_price(datas.size), get_price(datas.size)]
data = pd.DataFrame(price).Tdata.index = datas#填充顔色,设置面积图
for p in price:plt.fill_between(datas, y1=p)# 折线图
plt.plot(data)# 设置x轴lable为斜线
fig.autofmt_xdate()# 设置x,y轴坐标标签
ax.set_title("折线图")
fig.tight_layout()plt.show()

3.分布

1.直方图
import matplotlib.pyplot as plt
import matplotlib as mpl
import numpy as npmpl.rcParams["font.family"] = "FangSong"  # 设置字体
mpl.rcParams["axes.unicode_minus"] = False  # 正常显示负号fig,ax=plt.subplots(1,1)#模拟数据,5行5列数据
data=np.round(np.random.random(25).reshape(5,5),1)
#直方图
plt.hist(data)#设置x,y轴坐标标签
ax.set_title("产品级别图")
#明确设置x,y轴数量fig.tight_layout()plt.show()

2.箱型图
import matplotlib.pyplot as plt
import matplotlib as mpl
import numpy as npmpl.rcParams["font.family"] = "FangSong"  # 设置字体
mpl.rcParams["axes.unicode_minus"] = False  # 正常显示负号fig,ax=plt.subplots(1,1)#模拟数据,5行5列数据
data=np.round(np.random.random(25).reshape(5,5),1)
#直方图
plt.boxplot(data)#设置x,y轴坐标标签
ax.set_title("箱型图")
#明确设置x,y轴数量fig.tight_layout()plt.show()

4.关联

使用:

1. 散点图:

坐标轴为数值型数据

import matplotlib.pyplot as plt
import numpy as np
#绘制散点图x = np.random.randn(100)
y = np.random.randn(100)*1.5
plt.scatter(x=x,y=y,color="red",marker="+")
#限制x、y轴显示范围
plt.xlim(-2,2)
plt.ylim(-2,2)#显示网格
plt.grid()plt.show()

2.热力图:

类别型数据,体现的是2组变量的关联性

import matplotlib.pyplot as plt
import matplotlib as mpl
import numpy as npmpl.rcParams["font.family"] = "FangSong"  # 设置字体
mpl.rcParams["axes.unicode_minus"] = False  # 正常显示负号fig,ax=plt.subplots(1,1)
# 绘制热力图
# 定义x轴,y轴内容
# x轴为 等级
x_lable = ["1级", "2级", "3级", "4级", "5级"]
# y轴为 产品
y_lable = ["产品1", "产品2", "产品3", "产品4", "产品5"]
#模拟数据,5行5列数据
data=np.round(np.random.random(25).reshape(5,5),1)
#热点图
plt.imshow(data)#轮流锁定单元格,设置单元格文字
for i in  np.arange(len(x_lable)):for j in np.arange(len(y_lable)):plt.text(i,j,data[i][j],color="w",ha="center",va="center")#设置x,y轴坐标标签
ax.set_title("产品级别图")
#明确设置x,y轴数量
ax.set_xticks(np.arange(len(x_lable)))
ax.set_yticks(np.arange(len(y_lable)))
ax.set_xticklabels(x_lable)
ax.set_yticklabels(y_lable)fig.tight_layout()plt.show()

5.组成

1.饼图
# coding:utf-8import matplotlib.pyplot as plt
import matplotlib as mpl
import numpy as np
import pandas as pd# 设置显示中文mpl.rcParams["font.family"] = "FangSong"  # 设置字体
mpl.rcParams["axes.unicode_minus"] = False  # 正常显示负号fig, ax = plt.subplots(1, 1)# 模拟数据
data = [0.1, 0.2, 0.3, 0.4]#绘制饼图,labels为每一项的名称 explode:突出值 autopct:格式化百分比, textprops字体格式
plt.pie(data,labels=["a","b","c","d"],explode=[0,0.2,0,0],autopct="%.1f%%",shadow=True,textprops={"size":"small"})# 设置x轴lable为斜线
fig.autofmt_xdate()# 设置x,y轴坐标标签
ax.set_title("折线图")
fig.tight_layout()plt.show()

2.条形图
import matplotlib.pyplot as plt
import matplotlib as mpl
import numpy as np
import pandas as pd# 设置显示中文mpl.rcParams["font.family"] = "FangSong"  # 设置字体
mpl.rcParams["axes.unicode_minus"] = False  # 正常显示负号fig, ax = plt.subplots(1, 1)# 模拟数据
data = [0.1, 0.2, 0.3, 0.4]
labels = ["a", "b", "c", "d"]
# 绘制条形图  color:设置条形颜色
plt.bar(labels, data, color=["r", "y", "b", "g"])# 显示条形上的文字
for x, y in zip(labels, data):plt.text(x, (y / 2), y)
# 设置x轴lable为斜线
fig.autofmt_xdate()# 设置x,y轴坐标标签
ax.set_title("条形图")
fig.tight_layout()plt.show()

6.分组

1.簇型散点图
import matplotlib.pyplot as plt
import matplotlib as mpl
import numpy as np
import pandas as pd# 设置显示中文mpl.rcParams["font.family"] = "FangSong"  # 设置字体
mpl.rcParams["axes.unicode_minus"] = False  # 正常显示负号fig, ax = plt.subplots(1, 1)# 模拟数据
a_x=np.random.random(100)+1
a_y=np.random.random(100)+1.5
a_x1=np.random.random(200)+2.1
a_y1=np.random.random(200)+1.7#绘制散点图分组
plt.scatter(a_x,a_y)
plt.scatter(a_x1,a_y1)
# 设置x轴lable为斜线
fig.autofmt_xdate()fig.tight_layout()plt.show()

2.分组条形图
import matplotlib.pyplot as plt
import matplotlib as mpl
import numpy as np
import pandas as pd# 设置显示中文mpl.rcParams["font.family"] = "FangSong"  # 设置字体
mpl.rcParams["axes.unicode_minus"] = False  # 正常显示负号fig, ax = plt.subplots(1, 1)# 模拟数据
x=["a","b","c","d"]
y1=[1,2,3,4]
y2=[4,3,2,1]
#绘制图形
plt.bar(x,y1)
plt.bar(x,y2)fig.autofmt_xdate()fig.tight_layout()plt.show()

3.分组条形图不覆盖
import matplotlib.pyplot as plt
import matplotlib as mpl
import numpy as np
import pandas as pd# 设置显示中文mpl.rcParams["font.family"] = "FangSong"  # 设置字体
mpl.rcParams["axes.unicode_minus"] = False  # 正常显示负号fig, ax = plt.subplots(1, 1)# 模拟数据axis1=[1,2,3,4]
axis2=[1.2,2.2,3.2,4.2]y1=[1,2,3,4]y2=[4,3,2,1]
#绘制图形
plt.bar(axis1,y1,width=0.2)
plt.bar(axis2,y2,width=0.2)fig.autofmt_xdate()fig.tight_layout()plt.show()

7.偏差

1.发散条形图
# coding:utf-8import matplotlib.pyplot as plt
import matplotlib as mpl
import numpy as np
import pandas as pd# 设置显示中文mpl.rcParams["font.family"] = "FangSong"  # 设置字体
mpl.rcParams["axes.unicode_minus"] = False  # 正常显示负号fig, ax = plt.subplots(1, 1)# 模拟数据
#绘制
y=["a","b","c","d"]
data=[-1,2,0.5,4]
data.sort()
plt.hlines(y=y,xmin=0,xmax=data,colors=["r","b","y","g"])
#设置网格
plt.grid(linestyle="--",alpha=0.5)
# 设置x轴lable为斜线
fig.autofmt_xdate()fig.tight_layout()plt.show()

2.面积图
mpl.rcParams["font.family"] = "FangSong"  # 设置字体
mpl.rcParams["axes.unicode_minus"] = False  # 正常显示负号fig, ax = plt.subplots(1, 1)# 模拟数据
#绘制
datas = pd.date_range("2018-01-01", "2021-01-01", freq="M")def get_price(size):return np.cumsum(np.random.randn(size))price ={"price":get_price(datas.size)}pd=pd.DataFrame(index=datas,data=price)plt.plot(pd["price"])
#填充面积颜色
plt.fill_between(pd.index,pd["price"],0)# 设置x轴lable为斜线
fig.autofmt_xdate()fig.tight_layout()

8.排序

这篇关于第二十四天-数据可视化Matplotlib的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/818962

相关文章

Git可视化管理工具(SourceTree)使用操作大全经典

《Git可视化管理工具(SourceTree)使用操作大全经典》本文详细介绍了SourceTree作为Git可视化管理工具的常用操作,包括连接远程仓库、添加SSH密钥、克隆仓库、设置默认项目目录、代码... 目录前言:连接Gitee or github,获取代码:在SourceTree中添加SSH密钥:Cl

Java注解之超越Javadoc的元数据利器详解

《Java注解之超越Javadoc的元数据利器详解》本文将深入探讨Java注解的定义、类型、内置注解、自定义注解、保留策略、实际应用场景及最佳实践,无论是初学者还是资深开发者,都能通过本文了解如何利用... 目录什么是注解?注解的类型内置注编程解自定义注解注解的保留策略实际用例最佳实践总结在 Java 编程

Python使用Matplotlib绘制3D曲面图详解

《Python使用Matplotlib绘制3D曲面图详解》:本文主要介绍Python使用Matplotlib绘制3D曲面图,在Python中,使用Matplotlib库绘制3D曲面图可以通过mpl... 目录准备工作绘制简单的 3D 曲面图绘制 3D 曲面图添加线框和透明度控制图形视角Matplotlib

Pandas中统计汇总可视化函数plot()的使用

《Pandas中统计汇总可视化函数plot()的使用》Pandas提供了许多强大的数据处理和分析功能,其中plot()函数就是其可视化功能的一个重要组成部分,本文主要介绍了Pandas中统计汇总可视化... 目录一、plot()函数简介二、plot()函数的基本用法三、plot()函数的参数详解四、使用pl

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1