算法打卡day14|二叉树篇03|104.二叉树的最大深度、559.n叉树的最大深度、111.二叉树的最小深度、222.完全二叉树的节点个数

本文主要是介绍算法打卡day14|二叉树篇03|104.二叉树的最大深度、559.n叉树的最大深度、111.二叉树的最小深度、222.完全二叉树的节点个数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

算法题

Leetcode  104.二叉树的最大深度

题目链接:104.二叉树的最大深度

大佬视频讲解:二叉树的最大深度视频讲解

个人思路

可以使用层序遍历,因为层序遍历会有一个层数的计算,最后计算到的层数就是最大深度;

解法
迭代法

就是层序遍历的模板代码,遍历节点的时候不用添加值,最后返回深度

class Solution {public int maxDepth(TreeNode root) {if(root == null) {return 0;}//层序遍历Deque<TreeNode> deque = new LinkedList<>();deque.offer(root);int depth = 0;while (!deque.isEmpty()) {int size = deque.size();depth++;//计算深度for (int i = 0; i < size; i++) {TreeNode node = deque.poll();if (node.left != null) {deque.offer(node.left);}if (node.right != null) {deque.offer(node.right);}}}return depth;}
}

时间复杂度:O(n);(遍历整棵树)

空间复杂度:O(n);(使用一个列表)

递归法

递归法也很简单,因为是计算树的最大深度,就把二叉树分为两边,各个计算深度取最大值即可。

本题可以使用前序(中左右),也可以使用后序遍历(左右中),使用前序求的就是深度,使用后序求的是高度力扣上的高度最低是1,也就是从1开始的;

  • 二叉树节点的深度:指从节点到该节点的最长简单路径边的条数或者节点数(取决于深度从0开始还是从1开始)
  • 二叉树节点的高度:指从该节点到叶子节点的最长简单路径边的条数或者节点数(取决于高度从0开始还是从1开始)
class Solution {public int maxDepth(TreeNode root) {if (root == null) {return 0;}int leftDepth = maxDepth(root.left);//计算左节点深度int rightDepth = maxDepth(root.right);//计算右节点深度return Math.max(leftDepth, rightDepth) + 1;//加一的原因是还有根节点}
}

时间复杂度:O(n);(遍历整棵树)

空间复杂度:O(n);(递归树的高度h)


Leetcode 59.n叉树的最大深度

题目链接:59.n叉树的最大深度

个人思路

与上面二叉树的思路差不多,只不过二叉树是遍历左右子树,n叉树就是遍历n各节点

解法

递归法

方法与二叉树最大深度一样,只不过要比较各个节点下的深度

class Solution {/*后序遍历求root节点的高度*/public int maxDepth(Node root) {if (root == null) return 0;int depth = 0;if (root.children != null){for (Node child : root.children){depth = Math.max(depth, maxDepth(child));//各个孩子节点中最高的节点}}return depth + 1; //中节点}  
}

时间复杂度:O(n);(遍历二叉树)

空间复杂度:O(n);(递归树的高度h

迭代法

与二叉树类似,只修改了孩子节点的遍历放入。

class Solution {//使用层序遍历public int maxDepth(Node root) {if (root == null)   return 0;int depth = 0;Queue<Node> que = new LinkedList<>();que.offer(root);while (!que.isEmpty()){depth ++;//根节点深度加1int len = que.size();//每层元素while (len > 0){Node node = que.poll();//对应二叉树层序遍历的左右节点for (int i = 0; i < node.children.size(); i++)if (node.children.get(i) != null) que.offer(node.children.get(i));len--;}}return depth;//深度}
}

时间复杂度:O(n);(遍历二叉树)

空间复杂度:O(n);(使用队列)


Leetcode 111.二叉树的最小深度

题目链接:111.二叉树的最小深度

大佬视频讲解:二叉树的最小深度视频讲解

最小深度是从根节点到最近叶子节点的最短路径上的节点数量。

说明:叶子节点是指没有子节点的节点。

个人思路

也可以层序遍历,当第一次遍历到改节点没有左右孩子,那深度就是最小深度。

解法
迭代法

在原来层序遍历的基础上加个判断节点左右孩子是否为空的操作即可;

class Solution {//层序遍历public int minDepth(TreeNode root) {if (root == null) {return 0;}Deque<TreeNode> deque = new LinkedList<>();deque.offer(root);int depth = 0;while (!deque.isEmpty()) {int size = deque.size();depth++;for (int i = 0; i < size; i++) {TreeNode poll = deque.poll();// 当第一次遍历到叶子结点,直接返回depth,因为从上往下遍历,所以该值就是最小值if (poll.left == null && poll.right == null) {return depth;}if (poll.left != null) {deque.offer(poll.left);}if (poll.right != null) {deque.offer(poll.right);}}}return depth;}
}

时间复杂度:O(n);(遍历整棵树)

空间复杂度:O(n);(使用队列)

递归法

注意在节点左孩子或右孩子 为空时的情况,这时深度要加1,看如下代码

class Solution {public int minDepth(TreeNode root) {1.确定递归函数的参数和返回值if (root == null) {2.确定终止条件return 0;}//3.确定单层递归的逻辑int leftDepth = minDepth(root.left);int rightDepth = minDepth(root.right);if (root.left == null) {return rightDepth + 1;//原因如上图}if (root.right == null) {return leftDepth + 1;}// 左右结点都不为nullreturn Math.min(leftDepth, rightDepth) + 1;}
}

时间复杂度:O(n);(遍历整棵树)

空间复杂度:O(n);(递归树的高度h)


Leetcode 222.完全二叉树的节点个数

题目链接:222.完全二叉树的节点个数

大佬视频讲解:完全二叉树的节点个数视频讲解

个人思路

将二叉树分为左子树和右子树,递归返回节点个数然后相加

解法
递归法
class Solution {public int countNodes(TreeNode root) {if(root == null) {return 0;}//还有个根节点所以加一return countNodes(root.left) + countNodes(root.right) + 1;}
}

时间复杂度:O(n);(遍历二叉树)

空间复杂度:O(n);(递归树的高度h)

迭代法

套用层序遍历的模板,只不过不加入节点值,直接计算节点数量

class Solution {public int countNodes(TreeNode root) {if (root == null) return 0;Queue<TreeNode> queue = new LinkedList<>();queue.offer(root);int result = 0;while (!queue.isEmpty()) {int size = queue.size();//当层元素个数while (size -- > 0) {TreeNode cur = queue.poll();result++;//遍历一个元素则加1if (cur.left != null) queue.offer(cur.left);if (cur.right != null) queue.offer(cur.right);}}return result;}
}

时间复杂度:O(n);(遍历二叉树)

空间复杂度:O(n);(使用队列)

以上是个人的思考反思与总结,若只想根据系列题刷,参考卡哥的网址代码随想录算法官网

这篇关于算法打卡day14|二叉树篇03|104.二叉树的最大深度、559.n叉树的最大深度、111.二叉树的最小深度、222.完全二叉树的节点个数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/810342

相关文章

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

从基础到高级详解Python数值格式化输出的完全指南

《从基础到高级详解Python数值格式化输出的完全指南》在数据分析、金融计算和科学报告领域,数值格式化是提升可读性和专业性的关键技术,本文将深入解析Python中数值格式化输出的相关方法,感兴趣的小伙... 目录引言:数值格式化的核心价值一、基础格式化方法1.1 三种核心格式化方式对比1.2 基础格式化示例

Python ORM神器之SQLAlchemy基本使用完全指南

《PythonORM神器之SQLAlchemy基本使用完全指南》SQLAlchemy是Python主流ORM框架,通过对象化方式简化数据库操作,支持多数据库,提供引擎、会话、模型等核心组件,实现事务... 目录一、什么是SQLAlchemy?二、安装SQLAlchemy三、核心概念1. Engine(引擎)

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”

深度解析Python yfinance的核心功能和高级用法

《深度解析Pythonyfinance的核心功能和高级用法》yfinance是一个功能强大且易于使用的Python库,用于从YahooFinance获取金融数据,本教程将深入探讨yfinance的核... 目录yfinance 深度解析教程 (python)1. 简介与安装1.1 什么是 yfinance?