洛谷P2572 [SCOI2010] 序列操作

2024-03-14 18:36

本文主要是介绍洛谷P2572 [SCOI2010] 序列操作,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目描述

lxhgww 最近收到了一个 01 序列,序列里面包含了 n 个数,下标从 0 开始。这些数要么是 0,要么是 1,现在对于这个序列有五种变换操作和询问操作:

  • 0 l r 把 [l,r] 区间内的所有数全变成 0;
  • 1 l r 把 [l,r] 区间内的所有数全变成 1;
  • 2 l r 把 [l,r] 区间内的所有数全部取反,也就是说把所有的 0 变成 1,把所有的 1 变成 0;
  • 3 l r 询问 [l,r] 区间内总共有多少个 1;
  • 4 l r 询问 [l,r] 区间内最多有多少个连续的 1。

对于每一种询问操作,lxhgww 都需要给出回答,聪明的程序员们,你们能帮助他吗?

输入格式

第一行两个正整数 n,m,表示序列长度与操作个数。
第二行包括 n 个数,表示序列的初始状态。
接下来 m 行,每行三个整数,表示一次操作。

输出格式

对于每一个询问操作,输出一行一个数,表示其对应的答案。

输入输出样例

输入 #1

10 10
0 0 0 1 1 0 1 0 1 1
1 0 2
3 0 5
2 2 2
4 0 4
0 3 6
2 3 7
4 2 8
1 0 5
0 5 6
3 3 9

输出 #1

5
2
6
5

说明/提示

【数据范围】
对于 30% 的数据,1≤n,m≤1000;
对于100% 的数据,1≤n,m≤105。

思路

一看就是线段树

将操作简化:

操作0,1:区间改值,同时优先级最大,用正常的lazy标记下传即可,下传时将区间取反标记清空。

操作2:区间取反,下传时若下区间有操作0,1的标记,将其取反,否则将已有的区间取反标记取反。

操作3:区间求和,对线段树每一个节点维护一个sum值

操作4:区间最长连续“1”,维护方法与维护最大字段和类似:分别记录

max1l,max1r,max1n,max0l,max0r,max0n;

表示必然包含左端点的最长连续“1”数目,必然包含右端点的最长连续“1”数目,最长连续“1”数目,必然包含左端点的最长连续“0”数目,必然包含右端点的最长连续“0”数目,最长连续“0”数目。

#include<bits/stdc++.h>
using namespace std;
struct Tree{int l,r,lazy,sum,max1l,max1n,max1r,len,lazyq;int max0l,max0n,max0r;
}tree[4000010]; 
int n,m;
int a[1000010];
inline void pushup(Tree &rt,Tree rl,Tree rr)
{rt.max1n=max(rl.max1n,max(rr.max1n,rl.max1r+rr.max1l));rt.max0n=max(rl.max0n,max(rr.max0n,rl.max0r+rr.max0l));if(rl.sum==rl.len) rt.max1l=rl.sum+rr.max1l;else rt.max1l=rl.max1l;if(rr.sum==rr.len) rt.max1r=rr.sum+rl.max1r;else rt.max1r=rr.max1r;if(!rl.sum) rt.max0l=rl.len+rr.max0l;else rt.max0l=rl.max0l;if(!rr.sum) rt.max0r=rr.len+rl.max0r;else rt.max0r=rr.max0r;rt.sum=rl.sum+rr.sum;return;
}
inline void build(int rt,int l,int r)
{if(l==r){tree[rt]=(Tree){l,r,-1,a[l],a[l],a[l],a[l],1,0,!a[l],!a[l],!a[l]};return;}tree[rt]=(Tree){l,r};int mid=(l+r)>>1;build(rt<<1,l,mid);build(rt<<1|1,mid+1,r);tree[rt].lazy=-1;tree[rt].len=tree[rt<<1].len+tree[rt<<1|1].len;pushup(tree[rt],tree[rt<<1],tree[rt<<1|1]);
}
inline void downlazy(int rt)
{if(tree[rt].lazy==-1&&tree[rt].lazyq==0) return;int rl=rt<<1,rr=rt<<1|1;if(tree[rt].lazy!=-1){tree[rl].lazyq=tree[rr].lazyq=0;tree[rl].lazy=tree[rr].lazy=tree[rt].lazy;tree[rl].sum=tree[rl].max1n=tree[rl].max1l=tree[rl].max1r=tree[rl].len*tree[rt].lazy;tree[rr].sum=tree[rr].max1n=tree[rr].max1l=tree[rr].max1r=tree[rr].len*tree[rt].lazy;tree[rl].max0n=tree[rl].max0l=tree[rl].max0r=tree[rl].len*(!tree[rt].lazy);tree[rr].max0n=tree[rr].max0l=tree[rr].max0r=tree[rr].len*(!tree[rt].lazy);tree[rt].lazy=-1;}if(tree[rt].lazyq){if(tree[rl].lazy!=-1) tree[rl].lazy^=1;else tree[rl].lazyq^=1;if(tree[rr].lazy!=-1) tree[rr].lazy^=1;else tree[rr].lazyq^=1;tree[rl].sum=tree[rl].len-tree[rl].sum;tree[rr].sum=tree[rr].len-tree[rr].sum;swap(tree[rl].max0l,tree[rl].max1l);swap(tree[rl].max0n,tree[rl].max1n);swap(tree[rl].max0r,tree[rl].max1r);swap(tree[rr].max0l,tree[rr].max1l);swap(tree[rr].max0n,tree[rr].max1n);swap(tree[rr].max0r,tree[rr].max1r);tree[rt].lazyq=0;}
}
inline void change(int rt,int L,int R,int d)
{if(tree[rt].l>=L&&tree[rt].r<=R){tree[rt].lazy=d;tree[rt].lazyq=0;tree[rt].sum=tree[rt].max1n=tree[rt].max1l=tree[rt].max1r=tree[rt].len*tree[rt].lazy;tree[rt].max0n=tree[rt].max0l=tree[rt].max0r=tree[rt].len*(!tree[rt].lazy);return;}downlazy(rt);int mid=(tree[rt].l+tree[rt].r)>>1;if(L<=mid) change(rt<<1,L,R,d);if(R>mid) change(rt<<1|1,L,R,d);pushup(tree[rt],tree[rt<<1],tree[rt<<1|1]);
}
inline void update(int rt,int L,int R)
{if(tree[rt].l>=L&&tree[rt].r<=R){if(tree[rt].lazy!=-1) tree[rt].lazy^=1;else tree[rt].lazyq^=1;tree[rt].sum=tree[rt].len-tree[rt].sum;swap(tree[rt].max0l,tree[rt].max1l);swap(tree[rt].max0n,tree[rt].max1n);swap(tree[rt].max0r,tree[rt].max1r);return;}downlazy(rt);int mid=(tree[rt].l+tree[rt].r)>>1;if(L<=mid) update(rt<<1,L,R);if(R>mid) update(rt<<1|1,L,R);pushup(tree[rt],tree[rt<<1],tree[rt<<1|1]);
}
inline int qerry_1(int rt,int L,int R)
{if(tree[rt].l>=L&&tree[rt].r<=R) return tree[rt].sum;downlazy(rt);int mid=(tree[rt].l+tree[rt].r)>>1,ans=0;if(L<=mid) ans+=qerry_1(rt<<1,L,R);if(R>mid) ans+=qerry_1(rt<<1|1,L,R);pushup(tree[rt],tree[rt<<1],tree[rt<<1|1]);return ans;
}
inline Tree qerry_2(int rt,int L,int R)
{if(tree[rt].l>=L&&tree[rt].r<=R) return tree[rt];downlazy(rt);int mid=(tree[rt].l+tree[rt].r)>>1;Tree ans,l,r;ans=l=r=(Tree){0,0,-1,0,0,0,0,0,0,0,0};if(L<=mid) l=qerry_2(rt<<1,L,R);if(R>mid) r=qerry_2(rt<<1|1,L,R);pushup(ans,l,r);return ans;
}
int main()
{cin>>n>>m;for(int i=1;i<=n;i++) cin>>a[i];build(1,1,n);for(int i=1;i<=m;i++){int op,l,r;scanf("%d%d%d",&op,&l,&r);l++,r++;switch(op){case 0:case 1:{change(1,l,r,op);break;}case 2:{update(1,l,r);break;}case 3:{printf("%d\n",qerry_1(1,l,r));break;}case 4:{Tree ans=qerry_2(1,l,r);printf("%d\n",ans.max1n);break;}}	} return 0;
}

这篇关于洛谷P2572 [SCOI2010] 序列操作的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/809339

相关文章

SQL中JOIN操作的条件使用总结与实践

《SQL中JOIN操作的条件使用总结与实践》在SQL查询中,JOIN操作是多表关联的核心工具,本文将从原理,场景和最佳实践三个方面总结JOIN条件的使用规则,希望可以帮助开发者精准控制查询逻辑... 目录一、ON与WHERE的本质区别二、场景化条件使用规则三、最佳实践建议1.优先使用ON条件2.WHERE用

Linux链表操作方式

《Linux链表操作方式》:本文主要介绍Linux链表操作方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、链表基础概念与内核链表优势二、内核链表结构与宏解析三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势六、典型应用场景七、调试技巧与

Java Multimap实现类与操作的具体示例

《JavaMultimap实现类与操作的具体示例》Multimap出现在Google的Guava库中,它为Java提供了更加灵活的集合操作,:本文主要介绍JavaMultimap实现类与操作的... 目录一、Multimap 概述Multimap 主要特点:二、Multimap 实现类1. ListMult

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Python使用Code2flow将代码转化为流程图的操作教程

《Python使用Code2flow将代码转化为流程图的操作教程》Code2flow是一款开源工具,能够将代码自动转换为流程图,该工具对于代码审查、调试和理解大型代码库非常有用,在这篇博客中,我们将深... 目录引言1nVflRA、为什么选择 Code2flow?2、安装 Code2flow3、基本功能演示

Python中OpenCV与Matplotlib的图像操作入门指南

《Python中OpenCV与Matplotlib的图像操作入门指南》:本文主要介绍Python中OpenCV与Matplotlib的图像操作指南,本文通过实例代码给大家介绍的非常详细,对大家的学... 目录一、环境准备二、图像的基本操作1. 图像读取、显示与保存 使用OpenCV操作2. 像素级操作3.

python操作redis基础

《python操作redis基础》Redis(RemoteDictionaryServer)是一个开源的、基于内存的键值对(Key-Value)存储系统,它通常用作数据库、缓存和消息代理,这篇文章... 目录1. Redis 简介2. 前提条件3. 安装 python Redis 客户端库4. 连接到 Re

Java Stream.reduce()方法操作实际案例讲解

《JavaStream.reduce()方法操作实际案例讲解》reduce是JavaStreamAPI中的一个核心操作,用于将流中的元素组合起来产生单个结果,:本文主要介绍JavaStream.... 目录一、reduce的基本概念1. 什么是reduce操作2. reduce方法的三种形式二、reduce

利用Python实现时间序列动量策略

《利用Python实现时间序列动量策略》时间序列动量策略作为量化交易领域中最为持久且被深入研究的策略类型之一,其核心理念相对简明:对于显示上升趋势的资产建立多头头寸,对于呈现下降趋势的资产建立空头头寸... 目录引言传统策略面临的风险管理挑战波动率调整机制:实现风险标准化策略实施的技术细节波动率调整的战略价

MySQL表空间结构详解表空间到段页操作

《MySQL表空间结构详解表空间到段页操作》在MySQL架构和存储引擎专题中介绍了使用不同存储引擎创建表时生成的表空间数据文件,在本章节主要介绍使用InnoDB存储引擎创建表时生成的表空间数据文件,对... 目录️‍一、什么是表空间结构1.1 表空间与表空间文件的关系是什么?️‍二、用户数据在表空间中是怎么