Pytorch——torchvision.datasets

2024-03-12 01:58

本文主要是介绍Pytorch——torchvision.datasets,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

torchvision 是PyTorch中专门用来处理图像的库,这个包中有四个大类。

 

  • torchvision.datasets
  • torchvision.models
  • torchvision.transforms
  • torchvision.utils

torchvision.datasets 是用来进行数据加载的,PyTorch团队在这个包中提前处理好了很多很多图片数据集。

  • MNIST
  • COCO(用于图像标注和目标检测)(Captioning and Detection)
  • LSUN Classification
  • ImageFolder
  • Imagenet-12
  • CIFAR10 and CIFAR100
  • STL10

以CIFAR10数据集为例:

import torchvision

代码样式

dset.CIFAR10(root, train=True, transform=None, target_transform=None, download=False)

参数说明

- root: 将该数据集存于哪个文件

- train:导入数据集类别(True = 训练集, False = 测试集)

-transform:默认是将数据导入为PIL格式,可以调用transform对图片进行处理

- download : True = 从互联上下载数据,并将其放在root目录下

如果数据集已经下载,什么都不干。 

代码示例

train_set = torchvision.datasets.CIFAR10(root="./dataset", train=True, transform=dataset_t, download=True)
test_set = torchvision.datasets.CIFAR10(root="./dataset", train=False, download=True)

 代码说明

root="./dataset":这里使用的是相对路径

dataset_t:对图片进行处理,需要提前定义

dataset_t = torchvision.transforms.Compose([torchvision.transforms.ToTensor()
])

训练集将数据转换为了tensor格式,测试集未作改动,但平时使用的2个操作要保持一致,这里只是为了展示。 

 对前10张图片用进行展示

from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter("logs")
for i in range(10):img, label = train_set[i]writer.add_image("train_img", img, i)
writer.close()

 使用torchboard查看

打开Terminal,输入

tensorboard --logdir=logs

结果

TensorFlow installation not found - running with reduced feature set.
Serving TensorBoard on localhost; to expose to the network, use a proxy or pass --bind_all
TensorBoard 2.7.0 at http://localhost:6006/ (Press CTRL+C to quit)

点击链接

数据集像素特别低 

这篇关于Pytorch——torchvision.datasets的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/799791

相关文章

Pytorch介绍与安装过程

《Pytorch介绍与安装过程》PyTorch因其直观的设计、卓越的灵活性以及强大的动态计算图功能,迅速在学术界和工业界获得了广泛认可,成为当前深度学习研究和开发的主流工具之一,本文给大家介绍Pyto... 目录1、Pytorch介绍1.1、核心理念1.2、核心组件与功能1.3、适用场景与优势总结1.4、优

conda安装GPU版pytorch默认却是cpu版本

《conda安装GPU版pytorch默认却是cpu版本》本文主要介绍了遇到Conda安装PyTorchGPU版本却默认安装CPU的问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目录一、问题描述二、网上解决方案罗列【此节为反面方案罗列!!!】三、发现的根本原因[独家]3.1 p

PyTorch中cdist和sum函数使用示例详解

《PyTorch中cdist和sum函数使用示例详解》torch.cdist是PyTorch中用于计算**两个张量之间的成对距离(pairwisedistance)**的函数,常用于点云处理、图神经网... 目录基本语法输出示例1. 简单的 2D 欧几里得距离2. 批量形式(3D Tensor)3. 使用不

PyTorch高级特性与性能优化方式

《PyTorch高级特性与性能优化方式》:本文主要介绍PyTorch高级特性与性能优化方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、自动化机制1.自动微分机制2.动态计算图二、性能优化1.内存管理2.GPU加速3.多GPU训练三、分布式训练1.分布式数据

判断PyTorch是GPU版还是CPU版的方法小结

《判断PyTorch是GPU版还是CPU版的方法小结》PyTorch作为当前最流行的深度学习框架之一,支持在CPU和GPU(NVIDIACUDA)上运行,所以对于深度学习开发者来说,正确识别PyTor... 目录前言为什么需要区分GPU和CPU版本?性能差异硬件要求如何检查PyTorch版本?方法1:使用命

pytorch自动求梯度autograd的实现

《pytorch自动求梯度autograd的实现》autograd是一个自动微分引擎,它可以自动计算张量的梯度,本文主要介绍了pytorch自动求梯度autograd的实现,具有一定的参考价值,感兴趣... autograd是pytorch构建神经网络的核心。在 PyTorch 中,结合以下代码例子,当你

在PyCharm中安装PyTorch、torchvision和OpenCV详解

《在PyCharm中安装PyTorch、torchvision和OpenCV详解》:本文主要介绍在PyCharm中安装PyTorch、torchvision和OpenCV方式,具有很好的参考价值,... 目录PyCharm安装PyTorch、torchvision和OpenCV安装python安装PyTor

pytorch之torch.flatten()和torch.nn.Flatten()的用法

《pytorch之torch.flatten()和torch.nn.Flatten()的用法》:本文主要介绍pytorch之torch.flatten()和torch.nn.Flatten()的用... 目录torch.flatten()和torch.nn.Flatten()的用法下面举例说明总结torch

使用PyTorch实现手写数字识别功能

《使用PyTorch实现手写数字识别功能》在人工智能的世界里,计算机视觉是最具魅力的领域之一,通过PyTorch这一强大的深度学习框架,我们将在经典的MNIST数据集上,见证一个神经网络从零开始学会识... 目录当计算机学会“看”数字搭建开发环境MNIST数据集解析1. 认识手写数字数据库2. 数据预处理的

Pytorch微调BERT实现命名实体识别

《Pytorch微调BERT实现命名实体识别》命名实体识别(NER)是自然语言处理(NLP)中的一项关键任务,它涉及识别和分类文本中的关键实体,BERT是一种强大的语言表示模型,在各种NLP任务中显著... 目录环境准备加载预训练BERT模型准备数据集标记与对齐微调 BERT最后总结环境准备在继续之前,确