pytorch之torch.flatten()和torch.nn.Flatten()的用法

2025-04-11 03:50
文章标签 用法 pytorch torch nn flatten

本文主要是介绍pytorch之torch.flatten()和torch.nn.Flatten()的用法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《pytorch之torch.flatten()和torch.nn.Flatten()的用法》:本文主要介绍pytorch之torch.flatten()和torch.nn.Flatten()的用...

torch.flatten()和torch.nn.Flatten()的用法

flatten()函数的作用是将tensor铺平成一维

torch.flatten(input, start_dim=0, end_dim=- 1) → Tensor
  • input (Tensor) – the input tensor.
  • start_dim (int) – the first dim to flatten
  • end_dim (int) – the last dim to flatten

start_dim和end_dim构成了整个你要选择铺平的维度范围

下面举例说明

x = torch.tensor([[1,2], [3,4], [5,6]])
x = x.flatten(0)
x
------------------------
tensor([1, 2, 3, 4, 5, 6])

对于图片数据,我们往往期望进入fc层的维度为(channels, N)这样

x = torch.tensor([[[1,2],[3,4]], [[5,6],[7,8]]])
x = x.flatten(1)
x
-------------------------
tensor([[1, 2],
        [3, 4],
        [5, 6]])

注:

torch.nn.Flatten(start_dim=1, end_dim=- 1)

start_dim 默认为 1

所以在构建网络时,下面两种是等价的

class Classifier(nn.Module):
    def __ipythonnit__(self):
        super(Classifier, self).__init__()
        # The arguments for commonly used modules:
        # torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0)
        # torch.nn.MaxPool2d(kernel_size, stride=None, padding=0)

        # input image size: [3, 128, 128]
        self.cnn_layers = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1),
            nn.BATchNorm2d(64),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2, padding=0),

            nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(128),
China编程            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2, padding=0),

            nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=4, stride=4, padding=0),
        )
        self.fc_layers = nn.Sequential(
         编程   nn.Linear(256 * 8 * 8, 256),
            nn.ReLU(),
            nn.Linear(256, 256),
            nn.ReLU(),
            phpnn.Linear(256, 11)
        )

    def forward(self, x):
        # input (x): [batch_size, 3, 128, 128]
        # output: [batch_size, 11]

        # Extract features by convolutional layers.
        x = self.cnn_layers(x)

 编程       # The extracted feature map must be flatten before going to fully-connected layers.
        x = x.flatten(1)

        # The features are transformed by fully-connected layers to obtain the final logits.
        x = self.fc_layers(x)
        return x
class Classifier(nn.Module):
    def __init__(self):
        super(Classifier, self).__init__()

        self.layers = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2, padding=0),

            nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(128),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=2, stride=2, padding=0),

            nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU(),
            nn.MaxPool2d(kernel_size=4, stride=4, padding=0),

            nn.Flatten(),

            nn.Linear(256 * 8 * 8, 256),
            nn.ReLU(),
            nn.Linear(256, 256),
            nn.ReLU(),
            nn.Linear(256, 11)
        )

    def forward(self, x):
       
        x = self.layers(x)

        return x

总结

以上为个人经验,希望能给大家一个参考,也希望大家多多支持编程China编程(www.chinasem.cn)。

这篇关于pytorch之torch.flatten()和torch.nn.Flatten()的用法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1154173

相关文章

全面掌握 SQL 中的 DATEDIFF函数及用法最佳实践

《全面掌握SQL中的DATEDIFF函数及用法最佳实践》本文解析DATEDIFF在不同数据库中的差异,强调其边界计算原理,探讨应用场景及陷阱,推荐根据需求选择TIMESTAMPDIFF或inte... 目录1. 核心概念:DATEDIFF 究竟在计算什么?2. 主流数据库中的 DATEDIFF 实现2.1

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串

Java中的数组与集合基本用法详解

《Java中的数组与集合基本用法详解》本文介绍了Java数组和集合框架的基础知识,数组部分涵盖了一维、二维及多维数组的声明、初始化、访问与遍历方法,以及Arrays类的常用操作,对Java数组与集合相... 目录一、Java数组基础1.1 数组结构概述1.2 一维数组1.2.1 声明与初始化1.2.2 访问

MySQL 中的 CAST 函数详解及常见用法

《MySQL中的CAST函数详解及常见用法》CAST函数是MySQL中用于数据类型转换的重要函数,它允许你将一个值从一种数据类型转换为另一种数据类型,本文给大家介绍MySQL中的CAST... 目录mysql 中的 CAST 函数详解一、基本语法二、支持的数据类型三、常见用法示例1. 字符串转数字2. 数字

Python中你不知道的gzip高级用法分享

《Python中你不知道的gzip高级用法分享》在当今大数据时代,数据存储和传输成本已成为每个开发者必须考虑的问题,Python内置的gzip模块提供了一种简单高效的解决方案,下面小编就来和大家详细讲... 目录前言:为什么数据压缩如此重要1. gzip 模块基础介绍2. 基本压缩与解压缩操作2.1 压缩文

解读GC日志中的各项指标用法

《解读GC日志中的各项指标用法》:本文主要介绍GC日志中的各项指标用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、基础 GC 日志格式(以 G1 为例)1. Minor GC 日志2. Full GC 日志二、关键指标解析1. GC 类型与触发原因2. 堆

MySQL数据库中ENUM的用法是什么详解

《MySQL数据库中ENUM的用法是什么详解》ENUM是一个字符串对象,用于指定一组预定义的值,并可在创建表时使用,下面:本文主要介绍MySQL数据库中ENUM的用法是什么的相关资料,文中通过代码... 目录mysql 中 ENUM 的用法一、ENUM 的定义与语法二、ENUM 的特点三、ENUM 的用法1

JavaSE正则表达式用法总结大全

《JavaSE正则表达式用法总结大全》正则表达式就是由一些特定的字符组成,代表的是一个规则,:本文主要介绍JavaSE正则表达式用法的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录常用的正则表达式匹配符正则表China编程达式常用的类Pattern类Matcher类PatternSynta

MySQL之InnoDB存储引擎中的索引用法及说明

《MySQL之InnoDB存储引擎中的索引用法及说明》:本文主要介绍MySQL之InnoDB存储引擎中的索引用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录1、背景2、准备3、正篇【1】存储用户记录的数据页【2】存储目录项记录的数据页【3】聚簇索引【4】二

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的